平成16年
電気関係学会 四国支部連合大会
講演論文集

2004 SHIKOKU-SECTION JOINT CONVENTION RECORD
OF
THE INSTITUTES OF ELECTRICAL AND RELATED ENGINEERS

電気学会
電子情報通信学会
情報処理学会
照明学会
映像情報メディア学会
計測自動制御学会
電気設備学会

四国支部
2-DOF Permanent Maglev System

Cui Tianshi
Koichi OKA

1. Introduction
There are many magnetic suspension systems that have been developed via electro-magnets [1]. However, in the multi-DOF (degree of freedom) micromanipulation, the huge volume and heat generation of electric coil are the shortcomings of electro-magnetic suspension system. In this paper, we introduce a 2 DOF suspension system in which we use permanent magnets and actuator to substitute electro-magnet for reducing the volume and heat generation of the system. It is also one step of multi-DOF micromanipulation.

2. Principle of suspension system
The principle of a permanent magnets suspension system is shown in Fig.1. A ferromagnetic body is suspended via an attractive force from a permanent magnet positioned above. The magnet is driven with an actuator. The direction of levitation is vertical, and the magnet and the object move only in this direction. The equilibrium position is determined in terms of a balance between the gravity force and the magnet force.

![Figure 1. Outline of suspension mechanism](image1)

If the actuator does not actively control the magnet's position, the levitated object will either fall or adhere to the magnet. However servo-control of the actuator can make this system stable. Because there is a smaller attractive force for a larger air gap between the permanent magnet and object, the actuator drives the magnet upwards in response to object movement from its equilibrium position towards the magnet. Similarly, the actuator drives the magnet downwards in response to object movement away from the magnet. In this way, the object can be stably suspended without contact [2][3].

A photograph of a prototype of a 2 DOF suspension system is shown in Fig. 2. The movements of the magnets and the iron ball are sensed using the gap sensors and the photo sensor, respectively.

![Figure 2. The prototype of suspension system](image2)

3. Analysis of system
As shown in Fig. 2, it is considered that the motions of the iron ball and the magnets divide into the vertical and the horizontal direction movement. It is consumed that two motions are individual each other. The analysis of vertical motion has been already investigated [1]. Here, the horizontal motions, which involve the motions of an iron ball and two permanent magnets driven by actuators, are mainly investigated. Fig. 3. shows the modal of horizontal motion of system.

![Figure 3. the modal of horizontal motion](image3)

Reference: