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1 Introduction
A Family of Allotropes of Carbon*1

※　Fullerenes, Graphene, Carbon nanotube, Carbon nanobud, Carbon

nanohorn, Graphyne, Carbon nanofoam...

*1 http://www.nec.com/, http://ja.wikipedia.org/wiki/



Fig. 1 Zigzag, Armchair and Chiral Nanotube. c© wikipedia.

Quantum graph approach for carbon nanotubes:

• Kuchment and Post(2007)

• Korotyaev and Lobanov(2007)



In this study, we consider spectra on a broken carbon

nanotube.

Fig. 2 A broken carbon nanotube. c© Akira Koshio.



Broken Carbon Nanotube

In a process to refine single wall carbon nanotubes, we need

metals such as Ni, Co, Y and Fe. So, carbon nanotubes are

strained with tiny particles of metals. In order to get rid of

these metals, we need to clean by acids. Carbon nanotubes

are broken in these process.

cf: There are a method to refine single wall carbon

nanotubes without any metal.

( metal-free thermal CVD , Akira Koshio，2011 )



In this study, we get rid of edges from a metric graph

corresponding to the zigzag carbon nanotubes and call

them broken zigzag carbon nanotubes.

Fig. 3 A pure zigzag carbon nanotube (Left) and a

broken zigzag carbon nanotube (Right).



Throughout this talk, we consider only the zigzag carbon

nanotubes:

Definition 1.1 (A pure zigzag carbon nanotube).

For a fixed number N ∈ N, we call

Γ̃N =
∪

ω=(n,j,k)∈Z̃

Γ̃ω

the zigzag carbon nanotube with N -zigzag, where

J̃ = {0, 1, 2}, ZN = Z/(NZ), Z̃ := Z × J̃ × ZN and

Γ̃ω(' [0, 1]) be an edge in Fig. 2 for ω ∈ Z.



Before we see the precise definition of Γ̃ω, let us see its

picture:

Fig. 4 Cutting and opening Γ̃6, we obtain the above

lattice. The indexes imply the ones of Γ̃n,j,k.



Definition 1.2 (The precise definition of each edge Γ̃n,j,k).

Let RN =
√

3
4 sin π

2N
. For ω = (n, j, k) ∈ Z̃, we define

Γ̃ω = {x = rω + teω| 0 ≤ t ≤ 1}(' [0, 1]), where

ck = cos
πk

N
, sk = sin

πk

N
, κk = RN (ck, sk, 0),

en,0,k = (0, 0, 1), e0 = (0, 0, 1),

en,1,k = κn+2k+1 − κn+2k +
e0

2
,

en,2,k = κn+2k+2 − κn+2k+1 −
e0

2
,

rn,0,k = κn+2k +
3n

2
e0,

rn,1,k = rn,0,k + e0, rn,2,k = rn+1,0,k.



We now get rid of some of vertical edges from Γ̃2N for a

fixed N ∈ N.

Definition 1.3 (A broken zigzag carbon nanotube). Let

Z := Z × J × ZN , where J := {1, 2, 3, 4, 5}. For

(n, j, k) ∈ Z, we consider edges Γn,j,k defined as follows:

Γn,1,k = Γ̃n,0,2k−1, Γn,2,k = Γ̃n,1,2k−1, Γn,3,k = Γ̃n,2,2k−1,

Γn,4,k = Γ̃n,1,2k and Γn,5,k = Γ̃n,2,2k. We call

ΓN =
∪

ω∈Z

Γω

a broken zigzag carbon nanotube*2.

*2 The right picture in Fig. 3 is the one in the case of N = 4.



Cutting and opening Γ3, we obtain the lattice in Fig. 5.

The indexes in this picture imply the ones of Γn,j,k.

Fig. 5 A broken zigzag carbon nanotube Γ3.



Let us define periodic Schrödinger operators in the Hilbert space

H := L2(ΓN ) = ⊕ω∈ZL2(Γω), where L2(Γω) := L2([0, 1]). For a

real-valued function q ∈ L2(0, 1), we define

(Hfω)(x) = −f ′′
ω (x) + q(x)fω(x), x ∈ (0, 1) ' Γ◦

ω , ω ∈ Z,
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ω∈Z
fω ∈ L2(ΓN )

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

L

ω∈Z(−f ′′
ω + qfω) ∈ L2(ΓN ),

−f ′
n,1,k(1) + f ′

n,2,k(0) − f ′
n,5,k−1(1) = 0,

fn,1,k(1) = fn,2,k(0) = fn,5,k−1(1),
−f ′

n,2,k(1) + f ′
n,3,k(0) + f ′

n+1,1,k(0) = 0,

fn,2,k(1) = fn,3,k(0) = fn+1,1,k(0),
fn,3,k(1) = fn,4,k(0), f ′

n,3,k(1) = f ′
n,4,k(0),

fn,4,k(1) = fn,5,k(0), f ′
n,4,k(1) = f ′

n,5,k(0)

for n ∈ Z and k ∈ ZN
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.



Definition 1.4 (A degenerate broken zigzag nanotube).

We call Γ1 a degenerate broken zigzag nanotube.

For convenience, we put Γn,j = Γn,j,1 for n ∈ Z and j ∈ J.

Then, we have the flag-like metric graph in Fig. 6.

Fig. 6 A degenerate broken zigzag nanotube Γ1.



Let Z1 := Z × J. We fix N ∈ N and put s = ei 2π
N . For

k = 1, 2, . . . , N , we define Hk in L2(Γ1) as follows:

(Hkfn,j)(x) = −u′′
n,j(x)+q(x)un,j(x), x ∈ (0, 1) ' Γ◦

n,j , (n, j) ∈ Z1,

Dom(Hk)
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L

(n,j)∈Z1
(−u′′

n,j + qun,j) ∈ L2(Γ1),

−u′
n,1(1) + u′

n,2(0) − sku′
n,5(1) = 0,

un,1(1) = un,2(0) = skun,5(1),
−u′

n,2(1) + u′
n,3(0) + u′

n+1,1(0) = 0,

un,2(1) = un,3(0) = un+1,1(0),
un,3(1) = un,4(0), u′

n,3(1) = u′
n,4(0),

un,4(1) = un,5(0), u′
n,4(1) = u′

n,5(0)

for n ∈ Z
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• Utilizing the same method as [Korotyaev and Lobanov,

’07], we obtain a unitary operator satisfying the following

unitarily equivalence:

H ' ⊕N
k=1Hk.

On the unitary equivalence of H and
⊕N

k=1 Hk

For f ∈ L2(ΓN ), we identify f as the sequence of vectors as

follows:

f = (fn,j,k)(n,j,k)∈Z = (fn,j)(n,j)∈Z1 = (

0

B

B

B

@

fn,j,1

fn,j,2

...
fn,j,N

1

C

C

C

A

)(n,j)∈Z1 .



Then, the operator H can be written as follows:

(Hfn,j)(x) =

0

B

B

B

B

@

−f ′′
n,j,1(x) + q(x)fn,j,1(x)

−f ′′
n,j,2(x) + q(x)fn,j,2(x)

...
−f ′′

n,j,N (x) + q(x)fn,j,N (x)

1

C

C

C

C

A

, (n, j) ∈ Z1,

Dom(H)

=
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α∈Z1
(−f ′′

α + qfα) ∈ L2(ΓN ),

−f ′
n,1(1) + f ′

n,2(0) − Sf ′
n,5(1) = 0,

fn,1(1) = fn,2(0) = Sfn,5(1),
f ′

n+1,1(0) − f ′
n,2(1) + f ′

n,3(0) = 0,

fn+1,1(0) = fn,2(1) = fn,3(0),
fn,3(1) = fn,4(0), f ′

n,3(1) = f ′
n,4(0),

fn,4(1) = fn,5(0), f ′
n,4(1) = f ′

n,5(0)

for n ∈ Z

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

.

Here, S is the following matrix:



S =


0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0

 .

The eigenvalues of the matrix S are {sk}N
k=1, where

s = ei 2π
N . For each k, the eigenvector corresponding to sk is

vk =
1√
N

t(1, s−k, s−2k, · · · , s−(N−1)k).

The matrix S can be decomposed as

S = sP1 + s2P2 + · · · + sNPN ,



by using the matrices P1,P2, . . . ,PN satisfying

Pku = (u, vk)vk (u ∈ CN ) and I = P1 + · · · + PN .

Thus, for any f = (


fn,j,1

fn,j,2

...

fn,j,N

)(n,j)∈Z1 ∈ L2(ΓN ), we

have
fn,j,1

fn,j,2

...
fn,j,N

 = P1


fn,j,1

fn,j,2

...
fn,j,N

 + · · · + PN


fn,j,1

fn,j,2

...
fn,j,N


= (fn,j , v1)v1 + · · · + (fn,j , vN )vN



Considering the unitary operator U : L2(ΓN ) → ⊕N
k=1L

2(Γ1)

Uf = ((fα, v1)α∈Z1 , . . . , (fα, vN )α∈Z1), f = (

0

B

B

B

@

fα,1

fα,2

...
fα,N

1

C

C

C

A

)α∈Z1 ,

we have
UHU−1 = ⊕N

k=1Hk.

• Thus, it is sufficient to examine σ(Hk) in order to examine

σ(H).

• In order to examine σ(Hk), we recall the spectral theory for

the corresponding Hill operator L := −d2/dx2 + q in L2(R),

where the real valued function q ∈ L2(0, 1), appearing as the

potential of H, is extended to the 1-periodic function on R.



Spectral Theory for the Hill operator

For λ ∈ C, let θ(x, λ) and ϕ(x, λ) be the solutions to the

Schrödinger equation

−y′′(x, λ) + q(x)y(x, λ) = λy(x, λ), x ∈ R, (1)

as well as the initial conditions θ(0, λ) = 1, θ′(0, λ) = 0
and ϕ(0, λ) = 0, ϕ′(0, λ) = 1, respectively.

(I) Since θ(x, λ), θ′(x, λ), ϕ(x, λ), ϕ′(x, λ) are entire in

λ ∈ C, the Lyapunov function

∆(λ) :=
θ(1, λ) + ϕ′(1, λ)

2

is also entire in λ ∈ C.



(II) It is known as the Floquet–Bloch theory that the

spectrum of L is characterized by ∆(λ) as

σ(L) = σac(L) = {λ ∈ R| |∆(λ)| ≤ 1} =
∪
j∈N

[λ2j−2, λ2j−1],

where λ0, λ1, λ2, . . . are zeroes of ∆(λ) ± 1 and are

labeled in increasing order.



(III) The zeroes of ∆(λ) ± 1 satisfy the inequality

λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 < . . . .

(IV) For j ∈ N, the interval Bj := [λ2j−2, λ2j−1] is called the

jth band of σ(L), counted from the bottom. Two

consecutive bands Bj and Bj+1 are separated by

Gj := (λ2j−1, λ2j), which is called the jth gap of σ(L).
(V) Let σD(L) be the Dirichlet spectrum, namely, the

spectrum of the eigenvalue problem −y′′ + qy = λy with

y(0) = y(1) = 0. Since σD(L) is discrete, we put

σD(L) = {µn}∞n=1, where {µn}∞n=1 is arranged in the

increasing order. Then, we have

σD(L) = {λ ∈ R| ϕ(1, λ) = 0} and µn ∈ [λ2n−1, λ2n]
for each n ∈ N.



2 Main Result
Definition 2.1 (The discriminant (Lyapunov function) for

σ(Hk)). For λ ∈ C, we define

∆2(λ)D(λ) = 4∆4(λ) +
θ1(λ)ϕ′

1(λ) − 7

2
∆2(λ) +

1 − θ1(λ)ϕ′
1(λ)

8
,

(2)

where θ1(λ) = θ(1, λ) and ϕ′
1(λ) = ϕ′(1, λ).

For k = 1, 2, . . . , N , we define

D(k, λ) =
2∆2(λ)D(λ) + s2

k
p

4∆4(λ) − 4∆2(λ)s2
k + s2

k

(3)

on C \ Pk, where

Pk = {λ ∈ C| 4∆4(λ) − 4∆2(λ)s2
k + s2

k = 0}. Here, we recall

sk = sin πk
N

. We call D(k, λ) the discriminant for Hk.



Definition 2.2. For k = 1, 2, . . . , N , let σ∞(Hk) be the flat

band of Hk, namely, the set of all eigenvalues of Hk with

infinite multiplicities.

Utilizing a direct integral decomposition for Hk, we see that the

function D(k, λ) plays the role of the discriminant for the

operator Hk for each k = 1, 2, . . . , N :

Theorem 2.3. For k = 1, 2, . . . , N , we have

σ(Hk) = σ∞(Hk) ∪ σac(Hk), where

σ∞(Hk) = σD(L) and σac(Hk) = {λ ∈ R| D(k, λ) ∈ [−1, 1]}.

For convenience, we put D(0, λ) = D(N, λ) and H0 = HN .

Since sN−k = sin π(N−k)
N

= sin πk
N

= sk for k = 1, 2, . . . , N , we

have D(k, λ) = D(N − k, λ) for k = 1, 2, . . . , N .



Thus, it is sufficient to examine the properties of the

discriminants

D(0, λ), D(1, λ), . . . , D(` − 1, λ)

if N = 2` − 1 and ` ∈ N. On the other hand, it is sufficient to

examine the properties of the discriminants

D(0, λ), D(1, λ), . . . , D(` − 1, λ), D(`, λ)

if N = 2` and ` ∈ N.

Let `N = [N−1
2

], where [x] implies the maximal natural number

which does not exceed x ∈ R. Note that `N = ` − 1 in the both

case where N = 2` − 1 and N = 2` for a fixed ` ∈ N.



Theorem 2.4. We have the followings:

(i) For k = 1, 2, . . . , N , we have σac(Hk) = σac(HN−k).

(ii) We have σac(H) = ∪`N
k=0σac(Hk) if N is odd,

σac(H) = ∪`N +1
k=0 σac(Hk) otherwise.

(iii) For k = 0, 1, 2, . . . , N , there exists real sequence

λ+
k,0 < λ−

k,1 ≤ λ+
k,1 < λ−

k,2 ≤ λ+
k,2 < · · · < λ−

k,n ≤ λ+
k,n < · · ·

such that σac(Hk) =
S∞

j=1[λ
+
k,j−1, λ

−
k,j ].

(iv) We have the following inequality:

λ+
0,0 < λ−

0,1 < λ+
0,1 < λ−

0,2 < λ+
0,2 < λ−

0,3 < λ+
0,3 < λ−

0,4 ≤ λ+
0,4

< λ−
0,5 < λ+

0,5 < λ−
0,6 < λ+

0,6 < λ−
0,7 < λ+

0,7 < λ−
0,8 ≤ λ+

0,8 < · · ·
< λ−

0,4n−3 < λ+
0,4n−3 < λ−

0,4n−2 < λ+
0,4n−2

< λ−
0,4n−1 < λ+

0,4n−1 < λ−
0,4n ≤ λ+

0,4n < · · · .



(v) For k = 1, 2, . . . , `N , we have

λ+
k,0 < λ−

k,1 ≤ λ+
k,1 < λ−

k,2 ≤ λ+
k,2 < λ−

k,3 ≤ λ+
k,3 < λ−

k,4 < λ+
k,4

< λ−
k,5 ≤ λ+

k,5 < λ−
k,6 ≤ λ+

k,6 < λ−
k,7 ≤ λ+

k,7 < λ−
k,8 < λ+

k,8 < · · ·

< λ−
k,4n−3 ≤ λ+

k,4n−3 < λ−
k,4n−2 ≤ λ+

k,4n−2

< λ−
k,4n−1 ≤ λ+

k,4n−1 < λ−
k,4n < λ+

k,4n < · · · .

• If sk 6=
q

7
8
, then we have λ−

k,2n−1 6= λ+
k,2n−1 for n ∈ N and

k = 1, 2, . . . , `N . If q ≡ 0 and sk =
q

7
8
, then we have

λ−
k,2n−1 = λ+

k,2n−1 for n ∈ N and k = 1, 2, . . . , `N .

• If k 6= N
6

, then we have λ−
k,4n−2 6= λ+

k,4n−2 for any

k = 1, 2, . . . , `N . If q ≡ 0 and k = N
6

, then we have

λ−
k,4n−2 = λ+

k,4n−2 for any n ∈ N and k = 1, 2, . . . , `N .



(vi) Assume that N = 2`. Then, we have λ−
`,n < λ+

`,n for all

n ∈ N.

(vii) Let {ηn}∞n=1 = {λ ∈ R| ∆(λ) = 0}, {µn}∞n=1 = σD(L)

and {ξn}∞n=1 = {λ ∈ R| ∆2(λ) = 5
12
} be labelled in the

increasing order each other. Then, we have

λ−
k,4n−2 ≤ ηn ≤ λ+

k,4n−2, λ−
k,4n ≤ µn ≤ λ+

k,4n

for any n ∈ N and k = 0, 1, 2, . . . , N . Furthermore, we have

λ−
k,4n−3 ≤ ξ2n−1 ≤ λ+

k,4n−3, λ−
k,4n−1 ≤ ξ2n ≤ λ+

k,4n−1

for any n ∈ N and k = 0, 1, 2, . . . , `N .

(viii) For n ∈ N, we put

λ−
n = max

0≤k≤`N

λ−
k,n and λ+

n = min
0≤k≤`N

λ+
k,n.



Then, we have

`N
[

k=0

σac(Hk) =

∞
[

n=1

[λ+
n−1, λ

−
n ].

Especially, we have

σac(H) =

(

S∞
n=1[λ

+
n−1, λ

−
n ] if N = 2` − 1,

`

S∞
n=1[λ

+
n−1, λ

−
n ]

´

∪ σac(H`) if N = 2`.

(ix) For n ∈ N, we put γn := (λ−
n , λ+

n ). Then, we have the

followings:

(a) For n ∈ N, we see that λ−
0,4n 6= λ+

0,4n if and only if γ4n 6= ∅.
(b) For n 6≡ 0 (mod 4), we see that γn 6= ∅ if and only if there

does not exist k ∈ {1, 2, . . . , `N} satisfying λ−
k,n = λ+

k,n.



3 Comparision
Let us compare our results with the results established in

[Korotyaev and Lobanov, ’07]. Kotoraev and Lobanov studied

the spectral theory for periodic Schrödinger operators on zigzag

carbon nanotube in the even case N = 2m + 1 for a fixed

integer m ≥ 0 such as

(H̃fω)(x) = −f ′′
ω (x) + q(x)fω(x), x ∈ (0, 1),

Dom(H̃)

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

M

ω∈Z
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L

ω∈Z(−f ′′
ω + qfω) ∈ L2(ΓN ),

−f ′
n,0,k(1) + f ′

n,1,k(0) − f ′
n,2,k−1(1) = 0,

fn,1,k(0) = fn,0,k(1) = fn,2,k−1(1),
f ′

n+1,0,k(0) − f ′
n,1,k(1) + f ′

n,2,k(0) = 0,

fn,1,k(1) = fn+1,0,k(0) = fn,2,k(0)
for n ∈ Z and k ∈ ZN

9
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>

;

.



Recall that s = ei 2π
N . Korotyaev and Lobanov proved the

unitarily equivalence H̃ ' ⊕N
k=1H̃k, where H̃k is the following

operator in L2(Γ̃1) for k = 1, 2, . . . , N :

(H̃kfα)(x) = −f ′′
α(x)+q(x)fα(x), x ∈ (0, 1), α ∈ Z̃1 := Z×{0, 1, 2},

Dom(H̃k)

=
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α∈Z̃1

fα ∈ L2(Γ1)

˛
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˛

˛

˛

˛

L

α∈Z̃1
(−f ′′

α + qfα) ∈ L2(Γ1),

−f ′
n,0(1) + f ′

n,1(0) − skf ′
n,2(1) = 0,

fn,1(0) = fn,0(1) = skfn,2(1),
f ′

n+1,0(0) − f ′
n,1(1) + f ′

n,2(0) = 0,

fn,1(1) = fn+1,0(0) = fn,2(0)
for n ∈ Z

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

.



The degenerate zigzag carbon nanotube Γ̃1 can be seen in

Fig. 7 (Compare with Fig. 6.).

Fig. 7 The degenerate zigzag carbon nanotube Γ̃1.



For k = 0, 1, 2, . . . , N − 1, define F0(λ) = 2∆2(λ) +
θ′
1(λ)ϕ1(λ)

4
− 1,

ξk =
F0+s2

k
ck

, ρk = s2
k(1 − ξ2

k) and F+
k = ckξk +

√
ρk.

Theorem 3.1 (Korotyaev and Lobanov, ’07).

(i) For k = 0, 1, 2, . . . , N , σ(Hk) = σ∞(Hk) ∪ σac(Hk), where

σ∞(Hk) = σD(L) and σac(Hk) = {λ| F+
k (λ) ∈ [−1, 1]}.

(ii) For k = 0, 1, 2, . . . , N , σac(Hk) = σac(HN−k).

(iii) For k = 0, 1, 2, . . . , N , there exists real sequence

λ̃+
k,0 < λ̃−

k,1 ≤ λ̃+
k,1 < λ̃−

k,2 ≤ λ̃+
k,2 < · · · < λ̃−

k,n ≤ λ̃+
k,n < · · ·

such that

σac(Hk) =
∞
[

j=1

[λ̃+
k,j−1, λ̃−

k,j ].



(iv) Theorem 3.3 in [Korotyaev and Lobanov, ’07] reads that

λ̃+
0,0 < λ̃−

0,1 < λ̃+
0,1 < λ̃−

0,2 ≤ λ̃+
0,2 < λ̃−

0,3 < λ̃+
0,3 < λ̃−

0,4 ≤ λ̃+
0,4 < · · ·

< λ̃−
0,2n−1 < λ̃+

0,2n−1 < λ̃−
0,2n ≤ λ̃+

0,2n < · · · .

(v) Theorem 1.4 in [Korotyaev and Lobanov, ’07]*3 reads that

λ̃+
k,0 < λ̃−

k,1 ≤ λ̃+
k,1 < λ̃−

k,2 < λ̃+
k,2 < λ̃−

k,3 ≤ λ̃+
k,3 < λ̃−

k,4 < λ̃+
k,4 < · · ·

if k =
N

3
,

λ̃+
k,0 < λ̃−

k,1 < λ̃+
k,1 < λ̃−

k,2 < λ̃+
k,2 < λ̃−

k,3 < λ̃+
k,3 < λ̃−

k,4 < λ̃+
k,4 < · · ·

if k 6=
N

3

for k = 1, 2, . . . , N − 1.

*3 Note that k = N
3

is equivalent to sk =
q

6
8
.



Remark 3.2. Theorem 1.8 implies that

λ+
k,0 < λ−

k,1 ≤ λ+
k,1 < λ−

k,2 < λ+
k,2 < λ−

k,3 ≤ λ+
k,3 < λ−

k,4 < λ+
k,4 < · · ·

if k =
N

π
sin−1

r

7

8
,

λ+
k,0 < λ−

k,1 < λ+
k,1 < λ−

k,2 ≤ λ+
k,2 < λ−

k,3 < λ+
k,3 < λ−

k,4 < λ+
k,4 < · · ·

if k =
N

6
,

λ+
k,0 < λ−

k,1 < λ+
k,1 < λ−

k,2 < λ+
k,2 < λ−

k,3 < λ+
k,3 < λ−

k,4 < λ+
k,4 < · · ·

if k 6=
N

6
,
N

π
sin−1

r

7

8

for k = 1, 2, . . . , N − 1. Compare this result with Theorem 1.8 (v).

Open Problem

Does k = 1, 2, . . . , N − 1 satisfying sk = sin πk
N

=
q

7
8

exist ?



This open problem was resolved as follows:

Lemma 3.3. (Miyanishi, 8, September, 2015)

We have sin−1
√

7
8 6∈ πQ.

Remark 3.4. Remark 3.2 combined with Lemma 3.3
implies the followings: For k = 1, 2, . . . , `N − 1, we have

λ+
k,0 < λ−

k,1 < λ+
k,1 < λ−

k,2 ≤ λ+
k,2 < λ−

k,3 < λ+
k,3 < λ−

k,4 < λ+
k,4 <

< λ−
k,5 < λ+

k,5 < λ−
k,6 ≤ λ+

k,6 < λ−
k,7 < λ+

k,7 < λ−
k,8 < λ+

k,8 < · · ·

if k =
N

6
,

λ+
k,0 < λ−

k,1 < λ+
k,1 < λ−

k,2 < λ+
k,2 < λ−

k,3 < λ+
k,3 < λ−

k,4 < λ+
k,4 < · · ·

if k 6=
N

6
.



4 Unperturbed Discriminant

In order to roughly understand Theorem 2.4, we consider

the unperturbed case: q ≡ 0. Namely, we consider

D0(0, λ) =
9
2

cos2
√

λ − 29
8

+
1

8 cos2
√

λ
, (4)

D0(k, λ) =
36 cos4

√
λ − 29 cos2

√
λ + 1 + 4s2

k

4
√

4 cos4
√

λ − 4s2
k cos2

√
λ + s2

k

(5)

for k = 1, 2, . . . , ` − 1. In the case where N = 2` and

` ∈ N, we additionally need to consider

D0(`, λ) =
36 cos4

√
λ − 29 cos2

√
λ + 5

4(2 cos2
√

λ − 1)
. (6)



Fig. 8 The graph of D0(0, λ) and cos
√

λ.



Fig. 9 The graph of D0(`, λ) and cos
√

λ.



Fig. 10 The graph of D0(1, λ), D0(3, λ), D0(5, λ) in

the case of N = 11 and cos
√

λ.



5 Parts of the proof
We shall see that the perturbed discriminants D(0, λ), D(`, λ) and

{D(k, λ)}`−1
k=1 behaves in a similar way to the unperturbed

discriminants D0(0, λ), D0(`, λ) and {D0(k, λ)}`−1
k=1 each other. We

make sure this in only the case where k = 0.

Lemma 5.1. The discriminant D(0, λ) has the following

properties.

(i) If λ ∈ σD(L), then we have D(0, λ) ≥ 1.

(ii) Let {ηn}∞n=1 = {λ ∈ R| ∆(λ) = 0} be labelled in the

increasing order. Then, for each n ∈ N, we have

D(0, λ) → +∞ as λ → ηn ± 0.

(iii) If λ satisfies ∆2(λ) = 5
12 , then we have D(0, λ) < −1.

(iv) We have D(0, λ) → +∞ as λ → −∞.



We recall

D(k, λ) =
2∆2(λ)D(λ) + s2

k
q

4∆4(λ) − 4∆2(λ)s2
k + s2

k

.

The asymptotics of the fundamental solutions are well-known*4:

θ(1, λ) = cos
√

λ +
1

2
√

λ

Z 1

0
(sin

√
λ + sin

√
λ(1 − 2t))q(t)dt

+O
 

e|=
√

λ|

|λ|

!

,

ϕ′(1, λ) = cos
√

λ +
1

2
√

λ

Z 1

0
(sin

√
λ + sin

√
λ(1 − 2t))q(t)dt

+O
 

e|=
√

λ|

|λ|

!

as |λ| → ∞.

*4 See [Poschel and Trubowitz, Inverse Spectral Theory ].



Thus, Rouché’s theorem is valid in the region appearing in the next

two pages:

Theorem 5.2. (Rouché’s theorem*5.) Suppose that f(z) and g(z) are

meromorphic functions defined in the simply connected domain D,

that C is simply closed contour in D, and that f(z) and g(z) have no

zeroes or poles for z ∈ C. If the strict inequality

|f(z) + g(z)| < |f(z)| + |g(z)| holds for all z ∈ C, then we have

Zf − Pf = Zg − Pg , where Zf (Zg , respectively) is the number of

zeroes of f(z) (g(z), respectively) that lies inside C and Pf (Pg ,

respectively) is the number of zeroes of f(z) (g(z), respectively) that

lies inside C.

*5 See [Mathews and Howell, Complex Analysis for Mathematics

and Engineering ]



Preparation for Rouché’s theorem (1) We define

C−
j (n) = {λ ∈ C|

√
λ = nπ + γj + ti, −n ≤ t ≤ n},

C+
j (n) = {λ ∈ C|

√
λ = nπ + γj+1 + ti, −n ≤ t ≤ n},

C×
j (n) = {λ ∈ C|

√
λ = t + ni, nπ + γj ≤ t ≤ nπ + γj+1},

C÷
j (n) = {λ ∈ C|

√
λ = t − ni, nπ + γj ≤ t ≤ nπ + γj+1},

where γ0 = 0, γ1 = arccos 1√
6

and γ2 = arccos 1
6

for j = 0, 1 and

n ∈ N. For j = 2, 3 and n ∈ N, we define

C−
j (n) = {λ ∈ C|

√
λ = nπ + δj + ti, −n ≤ t ≤ n},

C+
j (n) = {λ ∈ C|

√
λ = nπ + δj+1 + ti, −n ≤ t ≤ n},

C×
j (n) = {λ ∈ C|

√
λ = t + ni, nπ + δj ≤ t ≤ nπ + δj+1},

C÷
j (n) = {λ ∈ C|

√
λ = t − ni, nπ + δj ≤ t ≤ nπ + δj+1},

where δ2 = arccos(− 1
6
), δ3 = arccos(− 1√

6
) and δ4 = π.



Furthermore, let Ωj(n) be the region surrounded by

Cj(n) := C+
j (n) − C×

j (n) − C−
j (n) + C÷

j (n)

for j = 0, 1, 2, 3 and n ∈ N.

(2) For real sequences {an}∞n=1 and {bn}∞n=1 satisfying

supn∈N an < infn∈N bn and an < bn for every n ∈ N, we define

segments

C+(bn) = {λ ∈ C|
√

λ = bn + ti, −n ≤ t ≤ n},

C−(an) = {λ ∈ C|
√

λ = an − ti, −n ≤ t ≤ n},

C×(an, bn) = {λ ∈ C|
√

λ = ni + bn + t(an − bn), 0 ≤ t ≤ 1},

C÷(an, bn) = {λ ∈ C|
√

λ = −ni + an + t(bn − an), 0 ≤ t ≤ 1}

and C(an, bn) = C+(bn) + C×(an, bn) + C−(an) + C÷(an, bn) for

each n ∈ N. Moreover, let Ω(an, bn) be the region surrounded by

C(an, bn) for each n ∈ N.



Lemma 5.3. We have the followings:

(I) For a fixed c ∈ (− 17
8 , 1), there exists some n0 ∈ N

satisfying the followings:

(i) D(0, λ) − c has exactly one zero, counted with

multiplicities, in Ωj(n) for each j = 0, 1, 2, 3 and

n0 < n ∈ N.

(ii) D(0, λ) − c has (2 + 4n) zeroes in

Ω(−(γ2 + nπ), γ2 + nπ) for any n > n0, where

γ2 = arccos 1
6 .

(iii) There are no other zeroes of D(0, λ) − c.



(II) For c ∈ [1,∞), there exists some n0 ∈ N such that

D(λ) − c has 2 zeroes in Ω(nπ + π
3 , nπ + 2

3π) for each

n > n0.

(III) For r ∈ (0, 1), there exists some n0 ∈ N satisfying the

followings:

(i) There are (1 + 4n) zeroes of D(0, λ) − 1 in

Ω(−(nπ + r), nπ + r) for each n > n0.

(ii) There are 2 zeroes of D(0, λ) − 1 in Ω(nπ − r, nπ + r)
for each n > n0.

(iii) There are no other zeroes of D(0, λ) − 1 except for the

zeroes stated in (II).



(IV) For r ∈ (−1, 1), there exists some n0 ∈ N satisfying

the followings:

(i) There are 2 zeroes of D(0, λ) + 1 in both regions

Ω(γ1 + nπ − r, γ1 + nπ + r) and

Ω(δ3 + nπ − r, δ3 + nπ + r) for n > n0, where

γ1 = arccos 1√
6

and δ3 = arccos(− 1√
6
).

(ii) There are 4n zeroes of D(0, λ) + 1 in Ω(−nπ, nπ) for

n > n0.

(iii) There are no other zeroes of D(0, λ) + 1.



To be continued in ...

Schrödinger operatprs on a periodically broken zigzag

carbon nanotube, submitted.

Thank you for your attention.

This work is supported by Grant-in-Aid for Young Scientists

(2580085), Japan Society for Promotion of Science.


