
Computation of the scattering amplitude in the

spheroidal coordinates

Takuya MINE

Kyoto Institute of Technology

12 October 2015 Lab Seminar
at Kochi University of Technology

Takuya MINE (KIT) Spheroidal coordinate Lab Seminar 1 / 81



Orthogonal curvilinear coordinates

There are several orthogonal curvilinear coordinates in which we can
solve the Helmholtz equation by separation of variables.

Today we consider the three-dimensional case, and study the
harmonic analysis in the spheroidal coordinates. As an application,
we try to calculate the wave functions and the scattering amplitude
for the idealized Tonomura model.
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Review: Spherical coordinate

As is well-known, the spherical coordinate in R3 is defined as follows.
x1 = r sin θ cosϕ,

x2 = r sin θ sinϕ,

x3 = r cos θ,

r ≥ 0, 0 ≤ η ≤ π, −π < ϕ ≤ π.

In the spherical coordinate, the Laplacian is written as

∆ =
1

r 2 sin θ

[
sin θ

∂

∂r

(
r 2
∂

∂r

)
+

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin θ

∂2

∂ϕ2

]
.
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Review: Spherical coordinate

The surface r = const.
is a sphere, θ = const.
a cone, ϕ = const. a
half-plane.
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Review: Spherical coordinate

The Helmholtz equation −∆u = k2u is equivalent to

d2f

dr 2
+

2

r

df

dr
+

(
k2 − ℓ(ℓ+ 1)

r 2

)
f = 0,

1

sin θ

d

dθ

(
sin θ

dg

dθ

)
+

(
ℓ(ℓ+ 1)− m2

sin2 θ

)
g = 0,

d2h

dϕ2
= −m2h,

where u = f (r)g(θ)h(ϕ), and ℓ,m are the separation constants.
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Review: Spherical coordinate

We have the solutions finite at r = 0, θ = 0, π, not diverging as
r → ∞, and periodic with respect to ϕ, for ℓ = 0, 1, 2, . . ., and
m = 0, 1, . . . , ℓ. The solutions are written as

u = jℓ(kr)P
m
ℓ (cos θ) cos(mϕ),

u = jℓ(kr)P
m
ℓ (cos θ) sin(mϕ) (m ̸= 0).

Here jℓ(z) =
√
π/(2z)Jℓ+1/2(z) is the spherical Bessel function, Pm

ℓ

is the associated Legendre function. The number ℓ is called the
azimuthal quantum number, and m the magnetic quantum number.
The completeness of these solutions are guaranteed by the following
formula.
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Review: Spherical coordinate

Proposition 1 (Rayleigh’s plane wave expansion formula)

Let (r , θ, ϕ) and (k , τ, ψ) are the spherical coordinates for x and p,
respectively. That is,

x = (r sin θ cosϕ, r sin θ sinϕ, r cos θ),

p = (k sin τ cosψ, k sin τ sinψ, k cos τ).

Then, we have

e ix ·p =
∞∑
ℓ=0

ℓ∑
m=0

[
i ℓc2ℓ,mjℓ(kr)P

m
ℓ (cos θ)P

m
ℓ (cos τ) cos(m(ϕ− ψ))

]
,

cℓ,m =

√
(2− δ0,m)(2ℓ+ 1)

(ℓ−m)!

(ℓ+m)!
.
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Review: Spherical coordinate

The Fourier inversion formula is described as follows.

u(x) =
1

(2π)3/2

∫
R3

e ix ·pû(p)dp

=
∞∑
ℓ=0

ℓ∑
m=0

i ℓcℓ,mP
m
ℓ (cos θ) cos(mϕ)

∫ ∞

0

jℓ(kr)uℓ,m,c(k)k
2dk

+
∞∑
ℓ=0

ℓ∑
m=1

i ℓcℓ,mP
m
ℓ (cos θ) sin(mϕ)

∫ ∞

0

jℓ(kr)uℓ,m,s(k)k
2dk ,

uℓ,m,c(k) =
1

(2π)3/2

∫ π

−π

∫ π

0

cl ,mPℓ,m(cos τ) cos(mψ)û(p) sin τdτdψ,

uℓ,m,s(k) =
1

(2π)3/2

∫ π

−π

∫ π

0

cl ,mPℓ,m(cos τ) sin(mψ)û(p) sin τdτdψ.
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Review: Phase shift and scattering amplitude

Let us explain how to calculate the scattering amplitude for the
Schrödinger operator H = −∆+ V (r) with a radial potential V (r)
decaying sufficiently fast at ∞. The free operator H0 = −∆ has
generalized eigenfunctions with eigenvalue k2 (k > 0)

u = jℓ(kr)P
m
ℓ (cos θ) cos(mϕ),

u = jℓ(kr)P
m
ℓ (cos θ) sin(mϕ) (m ̸= 0),

and the radial part jℓ(kr) has the asymptotics

jℓ(kr) ∼
1

kr
cos

(
kr − (ℓ+ 1)π

2

)
(r → ∞).
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Review: Phase shift and scattering amplitude

If V (r) decays sufficiently fast at ∞, we can prove that the perturbed
operator H has generalized eigenfunctions with eigenvalue k2 (k > 0)

u = uℓ,k(r)P
m
ℓ (cos θ) cos(mϕ),

u = uℓ,k(r)P
m
ℓ (cos θ) sin(mϕ) (m ̸= 0)

for any ℓ = 0, 1, 2, . . . and m = 0, 1, . . . , ℓ, and uℓ,k(r) has the
asymptotics

uℓ,k(r) ∼
1

kr
cos

(
kr − (ℓ+ 1)π

2
+ δℓ,k

)
(r → ∞),

where δℓ,k is a real constant called the scattering phase shift.
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Review: Phase shift and scattering amplitude

The wave operators W± are defined by

W±u = s-lim
t→±∞

e itHe−itH0u.

Notice that the solution to the Schrödinger equation

i
∂

∂t
ψ(t, x) = Hψ(t, x), ψ(0, x) = u(x)

is ψ(t, x) = e−itHu(x). The above definition means the solutions
e−itHW±u behave like the free solutions e−itH0u as t → ±∞,
respectively.
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Review: Phase shift and scattering amplitude

The scattering operator S is defined by S = W ∗
+W−. By the

conservation of energy, the operator FSF∗ (F is the Fourier
transform) is decomposed into the direct integral of the operators
S(E ) (E > 0) acting on L2(SE ), where SE is the energy shell

SE = {ξ ∈ R3 | |ξ|2 = E} = {
√
Eω | ω ∈ S2}.

Then the scattering amplitude f (k2;ω, ω′) is defined by the formula

(S(k2)− I )(ω, ω′) =
ki

2π
f (k2;ω, ω′) (ω, ω′ ∈ S2).

The quantity |f (k2;ω, ω′)|2 is called the differential scattering cross
section, which is proportional to the ratio of the particles with energy
k2, incident direction ω′ and final direction ω.
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Review: Phase shift and scattering amplitude

Proposition 2 (Formula for the scattering amplitude)

Given the scattering phase shifts δℓ,k , the scattering amplitude for the
whole operator is given by

f (k2;ω, ω′)

=
1

2ik

∞∑
ℓ=0

(e2iδℓ,k − 1)
ℓ∑

m=0

c2ℓ,mP
m
ℓ (cos θ)P

m
ℓ (cos τ) cos(m(ϕ− ψ))

=
∞∑
ℓ=0

e2iδℓ,k − 1

2ik
(2ℓ+ 1)Pℓ(ω · ω′).

The final result depends only on the angle between ω and ω′, because
of the spherical symmetry of the system (V is radial).
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Review: Phase shift and scattering amplitude

In summary,

(1) By the spherical coordinate, we can decompose the scattering
problem in the three-dimensional space to the problem in the
one-dimensional space (scattering phase shift).

(2) By using the plane wave expansion formula, we can sum up the
partial scattering data and get the scattering amplitude for the
whole operator.

This machinery also works in the case of the spheroidal coordinate.
There are two spheroidal coordinates (the prolate spheroidal
coordinate and the oblate spheroidal coordinate), but today we only
use the oblate one.
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Oblate spheroidal coordinate

The oblate spheroidal coordinate is defined as follows.
x1 = a cosh ξ sin η cosϕ,

x2 = a cosh ξ sin η sinϕ,

x3 = a sinh ξ cos η,

ξ ≥ 0, 0 ≤ η ≤ π, −π < ϕ ≤ π,

where a is a positive constant. This definition is taken from ‘Iwanami
mathematical formulas III’ (there is another formulation).
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Oblate spheroidal coordinate

The surface ξ = const.
is a flattened ellipsoid,
η = const. a hyper-
boloid of one sheet,
ϕ = const. a half-
plane.
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Laplacian in the oblate spheroidal coordinate

The Laplacian is written as follows.

∆u =
1

a2 cosh ξ sin η(cosh2 ξ − sin2 η)

·

(
sin η

∂

∂ξ

(
cosh ξ

∂u

∂ξ

)
+ cosh ξ

∂

∂η

(
sin η

∂u

∂η

)

+
cosh2 ξ − sin2 η

cosh ξ sin η

∂2u

∂ϕ2

)
.

If we put u = f (ξ)g(η)h(ϕ), the Helmholtz equation −∆u = k2u is
reduced to the following ordinary differential equations.
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Laplacian in the oblate spheroidal coordinate

1

cosh ξ

d

dξ

(
cosh ξ

df

dξ

)
+

(
a2k2 cosh2 ξ − µ+

m2

cosh2 ξ

)
f = 0, (1)

1

sin η

d

dη

(
sin η

dg

dη

)
+

(
−a2k2 sin2 η + µ− m2

sin2 η

)
g = 0, (2)

d2h

dϕ2
= −m2h. (3)

Here m, µ are the separation constants.
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Laplacian in the oblate spheroidal coordinate

We require

(a) g(η) is finite at η = 0, π,

(b) h(ϕ) has period 2π, and

(c) u is single-valued with respect to the original coordinate x .

By (b) and (3), we have

h(ϕ) = cos(mϕ) (m = 0, 1, 2, . . .),

h(ϕ) = sin(mϕ) (m = 1, 2, . . .).
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Laplacian in the oblate spheroidal coordinate

We put λ = µ− a2k2, c = −iak . By the change of variable
z = i sinh ξ in (1), and w = cos η in (2), we have

d

dz

(
(1− z2)

df

dz

)
+

(
λ− c2z2 − m2

1− z2

)
f = 0, (4)

d

dw

(
(1− w 2)

dg

dw

)
+

(
λ− c2w 2 − m2

1− w 2

)
g = 0. (5)

Thus the two equations (4) and (5) are equivalent as equations for
complex variables. Especially when c = 0, these equations become
the associated Legendre differential equation, which is obtained from
the equation for g(θ) in the spherical coordinate by the change of
variable w = cos θ.
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Angular spheroidal wave function

By the requirement (a), we need the solutions to (5) finite at
w = ±1. For fixed m = 0, 1, 2, . . ., there are at most countable
values of λ’s for which the equation (5) has a non-trivial solution
finite at w = ±1. We denote such values by

λmℓ (ℓ = m,m + 1,m + 2, . . .),

and corresponding solutions by Smℓ(c ,w). We call Smℓ(c ,w) the
angular spheroidal wave function (of the first kind) . When c = 0,
Smℓ(0,w) coincides with the associated Legendre function Pm

ℓ (w).
Smℓ(c ,w) is normalized as∫ 1

−1

|Smℓ(c ,w)|2dw =
2

2ℓ+ 1

(ℓ+m)!

(ℓ−m)!
.
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Radial spheroidal wave function

Notice that Smℓ(c , z) is also a solution to the radial equation (4) with
the same parameter λ = λmℓ. We introduce another solution
R

(1)
mℓ (c , z), which is a constant multiple of Smℓ(c , z), and behaves like

R
(1)
mℓ (c , z) ∼

1

cz
cos

(
cz − ℓ+ 1

2
π

)
as z → i∞. (6)

Notice that z → i∞ corresponds the limit ξ → ∞, and

cz = −iak · i sinh ξ = k · a sinh ξ ∼ kr (ξ → ∞).

Thus (6) means R
(1)
mℓ (c , z) behaves like usual spherical Bessel

function at infinity. We call R
(1)
mℓ (c , z) the radial spheroidal wave

function of the first kind.
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Radial spheroidal wave function

Notice that the left hand side of the equation (4) preserves the parity

of f . Actually, R
(1)
mℓ (c , z) is an even function if ℓ−m is even, and an

odd function if ℓ−m is odd (the same as Pm
ℓ (z)). Then, there exists

a non-trivial solution to (4) which has the opposite parity to that of

R
(1)
mℓ (c , z). We denote such solution by R

(5)
mℓ (c , z) (R

(j)
mℓ(c , z) for

j = 2, 3, 4 are already defined in the handbook of Abramowitz and
Stegun). We normalize R

(5)
mℓ (c , z) so that there exists a constant δmℓ,k

such that

R
(5)
mℓ (c , z) ∼

1

cz
cos

(
cz − ℓ+ 1

2
π + δmℓ,k

)
as z → i∞. (7)
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Matching condition

Let us consider the requirement (c). Notice that in the spheroidal
coordinate 

x1 = a cosh ξ sin η cosϕ,

x2 = a cosh ξ sin η sinϕ,

x3 = a sinh ξ cos η,

the two coordinates (ξ, η, ϕ) and (−ξ, π − η, ϕ) give the same point
x . Thus (c) implies

f (ξ)g(η) = f (−ξ)g(π − η).

Since z = i sinh ξ and w = cos η, the above condition requires f and
g have the same parity with respect to z and w , respectively.
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The generalized eigenfunctions for −∆

In summary, we obtain generalized eigenfunctions for −∆ with
eigenvalue k2

u = Smℓ(−iak , i sinh ξ)R
(1)
mℓ (−iak , cos η) cosmϕ,

u = Smℓ(−iak , i sinh ξ)R
(1)
mℓ (−iak , cos η) sinmϕ,

m = 0, 1, 2, . . . ,

ℓ = m,m + 1,m + 2, . . . .

As an application, we give some level surfaces of an eigenfunction for
−∆ in a flattened ellipsoid with the Dirichlet boundary conditions.
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Level surfaces of a Dirichlet eigenfunction
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Level surfaces of a Dirichlet eigenfunction
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Level surfaces of a Dirichlet eigenfunction
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Level surfaces of a Dirichlet eigenfunction
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Level surfaces of a Dirichlet eigenfunction
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Idealized Tonomura model

We consider a ring in R3,

R = {x ∈ R3 | |x | = a, x3 = 0}

in which a quantized magnetic flux
is enclosed. This is an idealized
model to the experiment by Tono-
mura et al. Actually, we can obtain
the explicit generalized eigenfunc-
tions for this model, by using the
oblate spheroidal coordinate.
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Idealized Tonomura model

The corresponding Hamiltonian is

H =

(
1

i
∇ − A

)2

on R3,

where A ∈ C∞(R3 \ R ;R3) is the magnetic vector potential satisfying

∇× A = 0 in R3 \ R ,∫
D

(∇× A) · n dS =

∫
∂D

A · dℓ = π

for any small disc D pierced by the ring R , where n is the unit normal
vector on D (the direction of n is appropriately fixed). Actually we
can take A satisfying the above conditions and the support A is
bounded in R3 (we assume this condition below).
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Idealized Tonomura model

Take x0 ∈ R3 sufficiently large, and consider a phase function defined
by the line integral

Φ(x) = exp

(
i

∫ x

x0

A · dℓ
)
.

The function Φ is two-valued, since

exp

(
i

∫
∂D

A · dℓ
)

= e iπ = −1

for any small disc D pierced by R . Moreover,

Φ

(
1

i
∇
)
Φ−1u =

(
1

i
∇− A

)
u.
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Idealized Tonomura model

Thus we have the intertwining relation

Hu = Φ(−∆)Φ−1u.

We put v = Φ−1u. Then,

Hu = k2u ⇔ −∆v = k2v ,

which is the Helmholtz equation. But v is a two-valued function in
the sense that v(x) changes the sign when x moves along an edge of
a small disc pierced by the ring R .
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Idealized Tonomura model

We need the solution for −∆v = k2v , by putting v = f (ξ)g(η)h(ϕ).
The equations for f , g , h are the same as before, but we require

(a) g(η) is finite at η = 0, π,

(b) h(ϕ) has period 2π, and

(c)’ v(x) changes the sign when x moves along an edge of a small
disc pierced by the ring R .

The requirement (c)’ is equivalent to the condition

f (ξ)g(η) = −f (−ξ)g(π − η).

Thus f and g have opposite parities with respect to z and w ,
respectively.
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Idealized Tonomura model

In summary, H has generalized eigenfunctions with energy k2

u = Φ · Smℓ(−iak , i sinh ξ)R
(5)
mℓ (−iak , cos η) cosmϕ,

u = Φ · Smℓ(−iak , i sinh ξ)R
(5)
mℓ (−iak , cos η) sinmϕ,

m = 0, 1, 2, . . . ,

ℓ = m,m + 1,m + 2, . . . .

As an application, we give some level surfaces for an eigenfunction of
H in a flattened ellipsoid with Dirichlet boundary conditions.
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Level surfaces of a Dirichlet eigenfunction for H
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Level surfaces of a Dirichlet eigenfunction for H
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Level surfaces of a Dirichlet eigenfunction for H
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Level surfaces of a Dirichlet eigenfunction for H
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Level surfaces of a Dirichlet eigenfunction for H
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Plane wave expansion formula

In order to develop the scattering theory, we use the plane wave
expansion formula in spheroidal coordinate, which is given in the
Flammer’s book.

Proposition 3
We use the oblate spheroidal coordinate in x-space and the spherical
coordinate in p-space, that is,

x1 = a cosh ξ sin η cosϕ,

x2 = a cosh ξ sin η sinϕ,

x3 = a sinh ξ cos η,


p1 = k sin τ cosψ,

p2 = k sin τ sinψ,

p3 = k cos τ.
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Plane wave expansion formula

Proposition (continued)

Then, we have

e ix ·p =
∞∑

m=0

∞∑
ℓ=m

i ℓc2ℓ,mR
(1)
mℓ (−iak , i sinh ξ)

·Smℓ(−iak , cos η)Smℓ(−iak , cos τ) · cosm(ϕ− ψ).

Here, the normalization constants cℓ,m is the one in the Rayleigh’s
formula.

Notice that R
(1)
mℓ (−iak , i sinh ξ) and jℓ(kr) has the same asymptotics

as ξ → ∞ (r → ∞).
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Scattering theory in the spheroidal coordinate

Remind that the phase shifts δmℓ,k are introduced as follows.

R
(1)
mℓ (−iak , i sinh ξ) ∼ 1

kr
cos

(
kr − (ℓ+ 1)π

2

)
,

R
(5)
mℓ (−iak , i sinh ξ) ∼ 1

kr
cos

(
kr − (ℓ+ 1)π

2
+ δmℓ,k

)
,

as r → ∞. In this case, δmℓ,k depends on both ℓ and m (in the case of
radial V , it depends only on ℓ). Then the scattering amplitude is
calculated as follows.
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Scattering theory in the spheroidal coordinate

Theorem 1
We introduce the spherical coordinate (τ, ψ) in S2 as

ω = (sin τ cosψ, sin τ sinψ, cos τ),

ω′ = (sin τ ′ cosψ′, sin τ ′ sinψ′, cos τ ′).

Then, the scattering amplitude with energy k2 for the pair H and
H0 = −∆ is

f (k2;ω, ω′)

=
1

2ik

∞∑
m=0

∞∑
ℓ=m

(e2iδ
m
ℓ,k − 1)c2ℓ,m

·Smℓ(−iak , cos τ)Smℓ(−iak , cos τ ′) cos(m(ϕ− ψ)).
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Numerical calculation of the scattering wave

The plane wave expansion formula is also useful in the calculation of
the plane wave scattered by the Tonomura ring. The incident plane
wave with momentum p in the perturbed system is described as

W−e
ix ·p = Φ ·

∞∑
m=0

∞∑
ℓ=m

i ℓc2ℓ,me
iδmℓ,kR

(5)
mℓ (−iak , i sinh ξ)

·Smℓ(−iak , cos η)Smℓ(−iak , cos τ)cos(m(ϕ− ψ)),

where Φ is the (two-valued) gauge function used in the construction
of the vector potential A.
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Numerical calculation of the scattering wave

There is ambiguity of the choice of the gauge function Φ. For
simplicity, we take Φ = 1, then the wave function satisfies the
boundary condition

u(x1, x2,+0) = −u(x1, x2,−0),

∂u

∂x3
(x1, x2,+0) = − ∂u

∂x3
(x1, x2,−0)

for x21 + x22 < a2. Thus the wave function might have discontinuity
on the disc enclosed by the ring R . In the real experiment, we can
observe only the square of the absolute value of the wave function, as
the hitting probability of the scattered particles. So, this is not
essential.
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Numerical calculation of the scattering wave

According to the numerical calculation, the phase shift δmℓ,k decays
very rapidly as ℓ→ ∞. If δmℓ,k is very small, then we have

e iδ
m
ℓ,kR

(5)
mℓ (−iak , i sinh ξ) ∼ R

(1)
mℓ (−iak , i sinh ξ).

Taking the difference with the usual plane wave expansion, we have

W−e
ix ·p

∼ e ix ·p +
∑

δmℓ,k : not small

i ℓc2ℓ,m

(
e iδ

m
ℓ,kR

(5)
mℓ − R

(1)
mℓ

)
(−iak , i sinh ξ)

·Smℓ(−iak , cos η)Smℓ(−iak , cos τ)cos(m(ϕ− ψ)).

This approximation can greatly unburden the numerical calculation.
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Numerical calculation of the scattering wave

For the calculation of the phase shift δmℓ,k , we need another spheroidal

function R
(2)
mℓ (c , z), which has the asymptotics

R
(2)
mℓ (c , z) ∼

1

cz
sin

(
cz − ℓ+ 1

2
π

)
as z → i∞.

Then we have

R
(5)
mℓ (c , z) = cos(δmℓ,k)R

(1)
mℓ (c , z)− sin(δmℓ,k)R

(2)
mℓ (c , z),

δmℓ,k =

arctan
(
R

(1)
mℓ (c , 0)/R

(2)
mℓ (c , 0)

)
(l −m: even),

arctan
(
(R

(1)
mℓ )

′(c , 0)/(R
(2)
mℓ )

′(c , 0)
)

(l −m: odd).
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Numerical calculation of the scattering wave

Fortunately, Wolfram Mathematica knows how to calculate R
(1)
mℓ and

R
(2)
mℓ . We give here the tables of |e iδmℓ,k − 1| for several l and m, in the

case a = 1 and k = 1.

l\m 0 1 2 3
0 0.610919 - - -
1 0.079627 0.105036 - -
2 0.001266 0.001833 0.006314 -
3 0.000009 0.000012 0.000029 0.000163

Table: |e iδ
m
ℓ,k − 1| for a = 1 and k = 1.

Thus, taking only the term for (ℓ,m) = (0, 0) is not so bad
approximation.
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Numerical calculation of the scattering wave

We assume a = 1 and the incident direction is x1-direction
(p = (1, 0, 0)), so k = 1, τ = π/2, ψ = 0. The approximation of the
incident plane wave is

W−e
ix1 ∼ e ix1 + c20,0

(
e iδ

0
0,1R

(5)
00 − R

(1)
00

)
(−i , i sinh ξ)

·S00(−i , cos η)S00(−i , 0).

From the next page, we shall exhibit the time propagation of the
incident plane wave, by plotting the imaginary part of the wave
function on xy -plane and xz-plane.
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Time propagation of the horizontal plane wave

Figure: The imaginary part of the incident plane wave on xy -plane.
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Time propagation of the horizontal plane wave

Figure: The imaginary part of the incident plane wave on xy -plane.
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Time propagation of the horizontal plane wave

Figure: The imaginary part of the incident plane wave on xy -plane.
Takuya MINE (KIT) Spheroidal coordinate Lab Seminar 54 / 81



Time propagation of the horizontal plane wave

Figure: The imaginary part of the incident plane wave on xy -plane.
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Time propagation of the horizontal plane wave

Figure: The imaginary part of the incident plane wave on xy -plane.
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Time propagation of the horizontal plane wave

Figure: The imaginary part of the incident plane wave on xy -plane.
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Time propagation of the horizontal plane wave

Figure: The imaginary part of the incident plane wave on xy -plane.
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Time propagation of the horizontal plane wave

Figure: The imaginary part of the incident plane wave on xz-plane.
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Time propagation of the horizontal plane wave

Figure: The imaginary part of the incident plane wave on xz-plane.
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Time propagation of the horizontal plane wave

Figure: The imaginary part of the incident plane wave on xz-plane.
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Time propagation of the horizontal plane wave

Figure: The imaginary part of the incident plane wave on xz-plane.
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Time propagation of the horizontal plane wave

Figure: The imaginary part of the incident plane wave on xz-plane.
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Time propagation of the horizontal plane wave

Figure: The imaginary part of the incident plane wave on xz-plane.
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Time propagation of the horizontal plane wave

Figure: The imaginary part of the incident plane wave on xz-plane.
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Numerical calculation of the scattering wave

Next we assume a = 1 and the incident direction is x3-direction
(p = (0, 0, 1)), so k = 1, τ = 0, ψ = 0. The approximation of the
incident plane wave is

W−e
ix3 ∼ e ix3 + c20,0

(
e iδ

0
0,1R

(5)
00 − R

(1)
00

)
(−i , i sinh ξ)

·S00(−i , cos η)S00(−i , 1).

From the next page, we shall again exhibit the time propagation of
the incident plane wave, by plotting the imaginary part of the wave
function on xy -plane and xz-plane.
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Time propagation of the vertical plane wave

Figure: The imaginary part of the incident plane wave on xy -plane.
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Time propagation of the vertical plane wave

Figure: The imaginary part of the incident plane wave on xy -plane.
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Time propagation of the vertical plane wave

Figure: The imaginary part of the incident plane wave on xy -plane.
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Time propagation of the vertical plane wave

Figure: The imaginary part of the incident plane wave on xy -plane.
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Time propagation of the vertical plane wave

Figure: The imaginary part of the incident plane wave on xy -plane.
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Time propagation of the vertical plane wave

Figure: The imaginary part of the incident plane wave on xy -plane.
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Time propagation of the vertical plane wave

Figure: The imaginary part of the incident plane wave on xy -plane.
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Time propagation of the vertical plane wave

Figure: The imaginary part of the incident plane wave on xz-plane.
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Time propagation of the vertical plane wave

Figure: The imaginary part of the incident plane wave on xz-plane.
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Time propagation of the vertical plane wave

Figure: The imaginary part of the incident plane wave on xz-plane.
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Time propagation of the vertical plane wave

Figure: The imaginary part of the incident plane wave on xz-plane.
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Time propagation of the vertical plane wave

Figure: The imaginary part of the incident plane wave on xz-plane.
Takuya MINE (KIT) Spheroidal coordinate Lab Seminar 78 / 81



Time propagation of the vertical plane wave

Figure: The imaginary part of the incident plane wave on xz-plane.
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Time propagation of the vertical plane wave

Figure: The imaginary part of the incident plane wave on xz-plane.
Takuya MINE (KIT) Spheroidal coordinate Lab Seminar 80 / 81



Remaining problems

(1) What we exhibited here are the imaginary part of the wave
functions, not the interference pattern in the real experiment.
How should we take the physical parameters?

(2) We need more technique for the numerical calculation.
Sometimes results by Mathematica are unreliable...

Figure: The graph of (R
(2)
11 )′(−i , ix) by Mathematica?

Formulas in Flammer’s book might help us.
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