量子情報技術と 光ファイバによる光通信

高知大学教育学部 技術教育コース 北川 晃

第一部 光の量子論的な取り扱いと 量子情報技術

電磁波(光)の基本的な性質

- この世で最も速く伝搬する
 c = 299,792,458(m/s)
- 一様な空間内を直進する(フェルマーの原理)
- ・異なる物質の境界面で屈折する
 幾何光学
- 電場,磁場の振動による波動現象
- 屈折率に応じて, 電磁波の伝搬速度が変化 波動光学
- ・ 光量子(エネルギーの最小単位)の集まり 量子光学

光線

• 光子数状態: |n> 実現は困難!! n = 1n = 20.2 -0.2 • コヒーレント状態: $|\alpha\rangle = e^{-\frac{|\alpha|^2}{2}} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$ ガウス曲線 0.3 0.2 0.1 0 2 4

ウィグナー関数W(x,p) ⇔波動関数 $\psi(x)$ > $\psi(x)$ が存在すれば、必ず存在する > 変数xとそれに共役なpに関する二値関数 > 必ずしも正とは限らない $W(x,p) = \frac{1}{2\pi\hbar} \int \psi^* \left(x + \frac{y}{2}\right) e^{i\frac{p}{\hbar}y} \psi \left(x - \frac{y}{2}\right) dy$

不確定関係の最小状態:擬古典状態 $(\Delta x)^2 = \langle \hat{x}^2 \rangle - \langle \hat{x} \rangle^2 = \frac{\hbar}{2\omega}$ $(\Delta p)^2 = \langle \hat{p}^2 \rangle - \langle \hat{p} \rangle^2 = \frac{\hbar\omega}{2}$ $\Delta x \cdot \Delta p = \frac{\hbar}{2}$

非古典的な量子光

スクィーズド状態: $|re^{i\phi}\rangle$ (Δx)² = $\langle \hat{x}^2 \rangle - \langle \hat{x} \rangle^2 = \frac{\hbar}{2\omega}e^{-2r}$ 共役な物理量のうち、一方を犠牲にして、 (Δp)² = $\langle \hat{p}^2 \rangle - \langle \hat{p} \rangle^2 = \frac{\hbar\omega}{2}e^{2r}$ もう一方の不確定性を下げる $\Delta x \cdot \Delta p = \frac{\hbar}{2}$

- 量子もつれ状態
- シュレディンガーの猫状態
 ・擬古典的なコヒーレント状態の重ね合わせ

量子論的な性質を用いた情報処理

シャノンにより体系化された従来の情報処理では、0もしくは1の値をとる量(ビット)を基本単位とするが...

量子論の世界では、0と1を同時に取ることができる!

シャノンの古典限界をも超える ことができるといわれている

- 電子のスピン
- ・ 光子の偏光
- 二準位原子
- 超伝導
- 光子数
- 素粒子(K中間子など)
- NMR? 7量子ビットを用いて15 = 3×5を実現, 賛否あり

光子数による重ね合わせ

Vandersypen et al., Nature 414, 883 (2001).

波動関数の干渉(可逆過程)を利用した,効率の良い計算アルゴリズム

・ショアの素因数分解アルゴリズム(1994)

P. W. Shor, "Algorithms for Quantum Computation: Discrete Logarithms and Factoring," In Proceeding of 35th IEEE FOCS, pp. 124-134 (1994).

▶ 素因数分解問題を高速に(多項式時間で)解くことのできるアルゴリズム

▶ 古典コンピュータでは、現実的な時間で解くことができない

⇒RSA公開鍵暗号の安全性の根底が崩れる!?

ある大きな数
$$N$$
の二つの因数 p,q を見つける
 $f(a) \equiv x^a \mod N$
の周期性を見つける

量子計算機実現の可能性!?

カナダのベンチャー企業, D-Waveが量子アニーリングを

M. W. Johnson et al., Nature 473, 194 (2011). 利用した量子計算機の開発

- ジョセフソン接合による超伝導磁束量子ビットを媒体
- 従来研究されてきた量子コンピュータとは動作原理が異なる
- 2013年,米Google社がNASAと共同で購入,研究を開始
- 真の量子計算機であるのか,現在も論争は続く...

図 1: 量子揺らぎと熱揺らぎ

量子情報技術を用いた光情報ネットワーク

大規模な量子情報処理系を考えた場合...

- 非古典光は量子情報処理に有効だが、雑音に極端に弱い(デコヒーレンス)
- 量子状態の干渉性が失われてしまうために, 増幅は不可(複製不可定理)
- 情報処理基地において, 高度な量子情報処理
- 遠隔地は雑音に強いコヒーレント光通信で結ぶ
- ・ 量子もつれの中継技術

- 量子もつれ交換
- •より損失の低い光ファイバ通信
- 測定過程を用いた能動的な量子状態操作
- 量子ゼノ効果, 量子非破壊測定

第二部 光ファイバを用いた光通信と 微弱光伝送の解析に向けた考察

A. Kitagawa, arXiv:1510.06836

媒質の境界面での光の振る舞い

- 光は部分的に反射・透過する(反射率+透過率=1).
- 入射角,屈折角の間にはスネルの法則が成り立つ。

 $n_1 \sin \theta_1 = n_2 \sin \theta_2$

• 臨界角 $\theta_c = \sin^{-1} \frac{n_2}{n_1}$ を越えると、全反射する.

屈折率差による全反射を用いた光ファイバ

画期的に上げることは無理

スラブ導波路(層状)

光ファイバ(円筒状)

光ファイバは、現在もっとも優れた長基線通信路と認知されているが…

物理学者(量子論)は:

- ・ 光ファイバは低損失なので,量子的な 微弱光にも適用できるだろう
- ・ 光ファイバ自体の研究は、光ファイバの
 専門家に任せておけばよい?

光ファイバエ学者(古典論)は:

- ・ 微弱光伝送は実用上難しいだろう
- これまでの古典的な定式化で十分
- ・ 光情報通信工学は,

マクスウェル方程式で記述できる

- 光ファイバエ学と量子光学の橋渡しをしたい
- 導波光学で現れる諸現象の,量子光学的な表現は?

光導波路内電磁場の量子論的取り扱いにおける課題

導波光学(光ファイバエ学)は、古典電磁気学の範囲内で体系化されている.

光ファイバ(誘電体)内の電磁場を量子論的に扱うに当たって:

- ① 誘電体中における屈折率の量子論的な扱い
- ② 屈折率境界面における電磁場の反射と透過
- ③ 誘電体内部の一様でない空間における電磁場の量子化
- ④ 電磁場の期待値の古典電磁場との対応
- ⑤ 光ファイバにおける固有値方程式の導出

以降では, コヒーレント状態を 中心に考察する $E = \langle \alpha | \hat{E} | \alpha \rangle$

①誘電体中における屈折率の量子論的な扱い

誘電体の構成原子を二準位原子と仮定,入射光子と共鳴しない($\Delta \omega = \omega_0 - \omega \gg 0$)

②屈折率境界面における光の反射と透過

TE(横電場)モードの場合

屈折率の違う領域では… > 光の伝搬速度が異なる > 光ビームの幅が異なる d_1 d_2 d_1 d_2 d_2 d_1 d_2 d_2 d_1 d_2 d_2 d_1 d_2 d_2 d_2 d_1 d_2 d_2 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_2 $d_1 > d_2$ $d_1 > d_2$ $d_1 > d_2$

 $t' = \frac{n_1 \cos \theta_1}{n_2 \cos \theta_2} t$

エネルギー密度の連続性は!?

透過係数が非対称!?

電磁場を境界面に垂直な波数成分で規格化

$\tilde{E}_j = \frac{1}{\sqrt{\kappa_j}} \frac{1}{H_j}$ $\widetilde{H}_i =$

 \tilde{E}_i, \tilde{H}_i に対して連続条件を適用

古典的波動光学)

$$\begin{pmatrix} E_{2} \\ E'_{1} \end{pmatrix} = \begin{pmatrix} t & -r \\ r & t' \end{pmatrix} \begin{pmatrix} E_{1} \\ E'_{2} \end{pmatrix}$$
(量子光学)

$$\begin{pmatrix} E_{2} \\ E'_{1} \end{pmatrix} = \begin{pmatrix} \tilde{t} & -\tilde{r} \\ \tilde{r} & \tilde{t} \end{pmatrix} \begin{pmatrix} E_{1} \\ E'_{2} \end{pmatrix}$$

$$\frac{1 - \kappa_{1}}{\kappa_{1} + \kappa_{2}}$$

$$\tilde{r} = \frac{\kappa_{1} - \kappa_{2}}{\kappa_{1} + \kappa_{2}}$$

量子光学におけるビームスプリッターモデル $\widehat{U}(\theta) = \exp\left[\theta\left(\widehat{a}_1^{\dagger}\widehat{a}_2 - \widehat{a}_1\widehat{a}_2^{\dagger}\right)\right]$ $\widehat{U}\widehat{a}_1\widehat{U}^{\dagger} = \widehat{a}_1\cos\theta - \widehat{a}_2\sin\theta = \widetilde{t}\widehat{a}_1 - \widetilde{r}\widehat{a}_2$ $\widehat{U}\widehat{a}_{2}\widehat{U}^{\dagger} = \widehat{a}_{1}\sin\theta + \widehat{a}_{2}\cos\theta = \widetilde{r}\widehat{a}_{1} + \widetilde{t}\widehat{a}_{2}$

コヒーレント状態に対して: $\widehat{U}|\alpha\rangle_A|\beta\rangle_B = |\widetilde{t}\alpha + \widetilde{r}\beta\rangle_A|-\widetilde{r}\alpha + \widetilde{t}\beta\rangle_B$ 規格化されたフレネル係数は, 量子論的な記述と相性がよい

 $\tilde{t} = \frac{2\sqrt{\kappa \cdot 0}}{\kappa \pm 0} = 0$ $\tilde{r} = \frac{\kappa - 0}{\kappa \pm 0} = 1$ **全反射** (入射角 $\theta_c \le \theta_1 < \frac{\pi}{2}$) 屈折角 $\theta_2 = \frac{\pi}{2} - i\varphi$ 波数ベクトル $k_2 = (\mathbf{0} + i\gamma)\mathbf{e}_x + \beta \mathbf{e}_z$ このモデルでは、クラッドへの光波の進入は不可能に見えるが... x軸方向に関する不確定性関係 $n_1 = 1.45$ $\Delta q \simeq \frac{\hbar}{\Delta p} = \frac{\lambda}{2\pi\sqrt{n_1^2 - n_2^2}} \simeq \frac{\lambda}{1.29} \quad \Delta n = \frac{n_1^2 - n_2^2}{2n_1^2} = 0.01$

波長程度のしみ出し:エバネッセント波

コア クラッド

③誘電体が空間分布を持つ場合の取り扱い

任意の屈折率の空間分布を持った誘電体

- 空間を有限幅に分割
- ・それぞれの領域内で屈折率が一定
- 境界面を通過するとき,透過・反射が起こる

場の量子化:エルミート演算子による記述

$$\hat{E}_{j} = -\frac{i}{\sqrt{|k_{x}|}} \sqrt{\frac{\hbar\omega}{2\varepsilon_{0}V}} (U_{tz}^{*}\hat{a}_{j}^{\dagger}e^{-i\kappa x} - U_{tz}\hat{a}_{j}e^{i\kappa x})$$

$$\hat{H}_{j} = -\frac{i}{c\mu_{0}\sqrt{|k_{x}|}} \sqrt{\frac{\hbar\omega}{2\varepsilon_{0}V}} (U_{tz}^{*}\hat{a}_{j}^{\dagger}e^{-i\kappa x} - U_{tz}\hat{a}_{j}e^{i\kappa x})$$

$$U_{tz} = \exp[-i(\omega t - \beta z)]$$

④電磁場のコヒーレント状態による期待値

$$j_{+} = -i \sqrt{\frac{\hbar\omega}{2\varepsilon_{0}V}} \left(U_{tz}^{*} \hat{a}_{j+}^{\dagger} e^{-i\kappa x} - U_{tz} \hat{a}_{j+} e^{i\kappa x} \right) \boldsymbol{e}_{y}$$
$$\hat{a}_{j+} \left| \alpha_{j+} \right\rangle_{j+} = \alpha_{j+} \left| \alpha_{j+} \right\rangle_{j+}$$
$$j_{-} = -i \sqrt{\frac{\hbar\omega}{2\varepsilon_{0}V}} \left(U_{tz}^{*} \hat{a}_{j-}^{\dagger} e^{i\kappa x} - U_{tz} \hat{a}_{j-} e^{-i\kappa x} \right) \boldsymbol{e}_{y}$$
$$\hat{a}_{j-} \left| \alpha_{j-} \right\rangle_{j-} = \alpha_{j-} \left| \alpha_{j-} \right\rangle_{j-}$$

TF-

固有値*α_j*+および*α_j*-は古典電磁場の 重ね合わせの係数に対応

$$\alpha_{j+} = \alpha_{j-}$$
のとき: 偶対称モード
 $\alpha_{j+} = -\alpha_{j-}$ のとき:奇対称モード

$$\widehat{\boldsymbol{E}}_{j} = \widehat{\boldsymbol{E}}_{j+} + \widehat{\boldsymbol{E}}_{j-} = -i \sqrt{\frac{\hbar\omega}{\varepsilon_0 V}} \left(U_{tz}^* \frac{\widehat{a}_{j+}^{\dagger} e^{-i\kappa x} + \widehat{a}_{j-}^{\dagger} e^{i\kappa x}}{\sqrt{2}} - U_{tz} \frac{\widehat{a}_{j+} e^{i\kappa x} + \widehat{a}_{j-} e^{-i\kappa x}}{\sqrt{2}} \right) \boldsymbol{e}_{y}$$

電磁場の干渉を考慮
した光子の演算子
$$\hat{c}_{j} = \frac{1}{\Delta x} \int_{\left(j-\frac{1}{2}\right)\Delta x}^{\left(j+\frac{1}{2}\right)\Delta x} \frac{\hat{a}_{j+}e^{i\kappa x} + \hat{a}_{j-}e^{-i\kappa x}}{\sqrt{2}} dx \simeq \frac{\hat{a}_{j+}e^{i\kappa x_{j}} + \hat{a}_{j-}e^{-i\kappa x_{j}}}{\sqrt{2}}$$

 $\hat{c}_{j}|\alpha\rangle_{j} = \sqrt{2}\alpha \cos \kappa x_{j}|\alpha\rangle_{j}$ $\hat{N}_{j} = \hat{c}_{j}^{\dagger}\hat{c}_{j}$ を用いて,各領域の光子数が評価できる

コヒーレント状態で期待値をとる $\overline{E}_{j} = \frac{1}{\Delta x} \int_{\left(j-\frac{1}{2}\right)\Delta x}^{\left(j+\frac{1}{2}\right)\Delta x} \langle \alpha | \widehat{E}_{j} | \alpha \rangle dx \simeq -i \sqrt{\frac{2\hbar\omega}{\varepsilon_{0}V}} \left(U_{tz}^{*}\alpha^{*} - U_{tz}\alpha\right) \cos \kappa x_{j} e_{y}$

- 電磁場強度の二乗は、それぞれの位置の光子数に比例する.
- 微弱な信号($\alpha \simeq 1$)の場合, 光子の存在確率に比例する.

光導波路は:

Ζ

- > 長手方向には自由に伝搬させる 🛑 波数の長手(z軸)方向成分 β : 伝搬定数
- ▶ 断面積方向には閉じ込める

境界において、電磁場がなめらかに連続である条件

固有値方程式(偶対称モード)
$$\frac{\gamma(\beta)d}{2} = \frac{\kappa(\beta)d}{2} \tan \frac{\kappa(\beta)d}{2}$$

光ファイバは, βができるだけ 大きくなるよう設計される

1995年, T.A. Birks, P.St. J. Russellら, 光の禁止帯を導波原理とする光ファイバ

T. A. Birks et al., Electron. Lett. **31**, 1941 (1995).

フォトニックバンドギャップファイバ

フォトニックバンドギャップ構造により, 光はコアに閉じ込められる.

• コアを中空とすることができ,

極限までの低損失が達成できる.

- 通信波長帯以外の波長でも効率よく導波できる.
- 石英以外のクラッド材質も使用可能.
- コアに様々な液体, 固体などを充填できる.

構造が複雑なので、解析が大変!!

ブラッグファイバ内部の古典電磁場解析

古典的な導波光学の範囲内では詳細な解析が行われている.

$$\binom{A^{\prime\prime}}{B^{\prime\prime}} = M^{\prime} \binom{A^{\prime}}{B^{\prime}} = M^{\prime} M \binom{A}{B}$$

各層における比例係数が行列Mで関連づけられる.

行列Mの複数のかけ算について、一般的な表現を導くことは難しい.

ブロッホの定理を<u>近似的に</u>適用して, 直観的な表現を導く F. Bloch, Z. Phys. 52, 555 (1928).

隣り合う領域の比例係数が二通りの方法で関連づけられたことになる. ①, ②より

 $M\binom{A}{B} = \exp(-iK\Lambda)\binom{A}{B}$

この固有値問題を解くことにより、各層における比例係数(A,B)が決まる.

J. Sakai, J. Opt. Soc. Am. B 22, 2319 (2005).

A. Kitagawa and J. Sakai, Phys. Rev. A 80, 033802 (2009).

ブラッグファイバにおける電磁場の分布

古典導波光学における計算結果

- ・ 電磁場の大半はコアに閉じ込め
- クラッドにおいて電磁場が減衰
- コアが中空であれば、損失は
 クラッドでのみ起こりうる

ブラッグファイバを用いた微弱光の伝搬

- ブラッグファイバは中空コアを持つため、従来の光ファイバが 達成しうる損失特性の理論限界を突破できる可能性がある.
- 量子情報通信のように微弱な光信号を伝送する場合には、
 特に効果的であると考えられる。
- ブラッグファイバの古典導波光学における伝搬特性の解析は
 詳細に行われているが、量子論的な扱いはまだない。
- 複雑な内部構造を持つブラッグファイバ内部の電磁場の量子化は、 量子光学の観点からも興味深いと考えられる。

ブラッグファイバ内部の電磁場の量子論的解析

電磁場の空間依存性を表現するために、ブラッグファイバ内部の空間を 多層分割法 同心円状に厚さΔrの円環に分割する. それぞれの円環を添え字jで区別する.

円環*j*におけるベクトルポテンシャルをÂ_iとおく.

ベクトルポテンシャルによる電磁場の記述

$$\widehat{A}_{j} = \frac{\widehat{A}_{j+} + \widehat{A}_{j-}}{\sqrt{2}}$$

$$\widehat{A}_{j+} = \sqrt{\frac{\hbar}{2\omega\varepsilon_0 V_j}} \left[U_{tz}^* \widehat{a}_{j+}^\dagger H_1^{(2)}(\kappa_j r) + U_{tz} \widehat{a}_{j+} H_1^{(1)}(\kappa_j r) \right] \boldsymbol{e}_{\theta}$$

動径方向の外向き,内向きに 進行する円筒波の重ね合わせ

$$\widehat{A}_{j-} = \sqrt{\frac{\hbar}{2\omega\varepsilon_0 V_j}} \Big[U_{tz}^* \widehat{a}_{j-}^\dagger H_1^{(1)}(\kappa_j r) + U_{tz} \widehat{a}_{j-} H_1^{(2)}(\kappa_j r) \Big] \boldsymbol{e}_{\theta}$$

$$U_{tz} = \exp[-i(\omega t - \beta z)]$$

量子論的に記述した屈折率

 $\left(\frac{n_{i}k_{i}}{k_{i}}\right)^{2} = \beta^{2} + \kappa_{i}^{2}$

ベクトルポテンシャルより, 電磁場を計算できる.

$$[\hat{a}_{j+}, \hat{a}_{j+}^{\top}] = 1$$

 $[\hat{a}_{j-}, \hat{a}_{j-}^{\dagger}] = 1$

$$\widehat{E}_{j} = -\frac{\partial A_{j}}{\partial t}, \widehat{H}_{j} = \frac{1}{\mu_{0}} (\nabla \times \widehat{A}_{j})$$

- ~

電磁場は動径の正負方向へ進行する成分が 空間的に重なり合って,<u>定常波</u>を形成する.

j番目の領域に対して、空間で平均化した演算子を導入する.

$$\hat{c}_{j} = \frac{1}{\Delta r} \int_{r_{j} - \frac{\Delta r}{2}}^{r_{j} + \frac{\Delta r}{2}} \frac{\hat{a}_{j}^{(+)} H_{1}^{(1)}(\kappa_{j}r) + \hat{a}_{j}^{(-)} H_{1}^{(2)}(\kappa_{j}r)}{\sqrt{2}} dr \simeq \frac{\hat{a}_{j}^{(+)} H_{1}^{(1)}(\kappa_{j}r_{j}) + \hat{a}_{j}^{(-)} H_{1}^{(2)}(\kappa_{j}r_{j})}{\sqrt{2}}$$

ー般に円筒関数の積分は困難であるが, 今回の計算は微分の定義より明らか.

$$\left[\hat{c}_{j},\hat{c}_{j}^{\dagger}\right] = H_{1}^{(1)}(\kappa_{j}r_{j})H_{1}^{(2)}(\kappa_{j}r_{j}) \simeq \frac{2}{\pi\kappa_{j}r_{j}}$$

 $\widehat{E}_j = \frac{\widehat{E}_{j+} + \widehat{E}_{j-}}{\sqrt{2}}$

j番目の領域における電磁場の様子

電磁場がコヒーレント状態の場合、 $\hat{a}_{j\pm} |\alpha_{j\pm}\rangle_{j\pm} = \alpha_{j\pm} |\alpha_{j\pm}\rangle_{j\pm}$ $\hat{c}_{j} |\alpha_{j+}\rangle_{j+} |\alpha_{j-}\rangle_{j-} = \sqrt{2}\alpha_{j}J_{1}(\kappa_{j}r_{j}) |\alpha_{j+}\rangle_{j+} |\alpha_{j-}\rangle_{j-}$

光ファイバ中心で 発散しないために, $\alpha_{j+} = \alpha_{j-} = \alpha_j$

$$\simeq \sqrt{\frac{2}{\pi \kappa_j r_j}} \cos\left(\kappa_j r_j - \frac{3\pi}{4}\right) \quad (\kappa_j r_j \text{が大きいとき} \sigma)$$

漸近展開)

• z軸(伝搬方向)に沿ったポインチング・ベクトル(エネルギーの流れ)

$$\widehat{G}_{j}\Big|_{z} = \frac{1}{c^{2}} \int_{V_{j}} \left(\widehat{E}_{j} \times \widehat{H}_{j}\right) \cdot e_{z} dV \simeq \frac{\hbar\beta}{2} \left(\widehat{c}_{j} \widehat{c}_{j}^{\dagger} + \widehat{c}_{j}^{\dagger} \widehat{c}_{j}\right)$$

各領域の電磁場の関連づけ

領域 $j \geq j + 1$ における電磁場の,境界面における接線成分 E_{θ}, H_z が連続

固有値 $\alpha_{j\pm} \& \alpha_{(j+1)\pm}$ が関連づけられるビームスプリッター演算子を用いた
光子演算子 $\hat{a}_{j\pm}, \hat{a}_{(j+1)\pm}$ の関連づけ $\binom{\alpha_{(j+1)+}}{\alpha_{(j+1)-}} = M_j \binom{\alpha_{j+}}{\alpha_{j-}} = \binom{p_j + q_j}{p_j - q_j} p_j - q_j \\ p_j - q_j \quad p_j + q_j \end{pmatrix} \binom{\alpha_{j+}}{\alpha_{j-}}$ 任意の領域*j*における固有値 $\alpha_{j\pm}$ は、
中心領域における固有値 $\alpha_{0\pm}$ で表せる. M_j の特殊な構造に着目すると...

 $P^{-1}M_{j}P = \begin{pmatrix} 2p_{j} & 0\\ 0 & 2q_{j} \end{pmatrix}$ 変換行列 $P = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1\\ 1 & 1 \end{pmatrix} は領域 j によらない$

近似的なブロッホの定理に頼らずに、行列の積を計算できる

- ブラッグファイバの作成は、その構造の複雑さゆえ、困難であると考えられるが...
- A. Dupuis et al., J. Opt. Soc. Am. B 28, 896 (2011).
- THz領域(λ ~ 300µm)での作成例
 - ▶ 二層の誘電体フィルムを巻く.
 - ▶ 近似的に同心円状の周期構造として機能しうる.

光通信ではλ~1μm程度の電磁波が 用いられるため,より微細な構造が必要

the symmetry. Cross-section pictures of the experimental fibers are

also shown.

微弱光など量子的な性質を示す媒体を用いた量子情報処理通信では、

シャノンの古典限界を超える可能性がある.

- 任意の屈折率分布を持つ誘電体内部での伝搬する電磁場について考察し、
 屈折率,反射・透過率を量子論的に記述した。
- 光の長基線通信路である光ファイバについて、量子光学の観点から考察し、 コヒーレント状態の場合には古典的な表現に帰着することを示した.
- 中空コア光ファイバの一つであるブラッグファイバについて検討し、

原理的には現在の石英系光ファイバの損失限界を超えうることを示した.

• ブラッグファイバ内部の電磁場について,量子論的な記述の検討を行った.

- より複雑な構造の光ファイバ(中空コアフォトニック結晶ファイバなど)に
 おける伝搬特性はどのようになるか.
- 光子数状態|n)を考えた場合,同様の手法が適用できるか.

 $\langle n | \hat{a}_i | n \rangle = 0$ 電磁場の屈折率境界面における接続条件?

本研究は科研費(26790058)の助成を受けたものである.

量子光学(光物性含む)

- 細谷暁夫(編),「量子の逆説(別冊日経サイエンス199)」,日経サイエンス社(2014).
- R. ラウドン,「光の量子論(第二版)」,内田老鶴圃(1994).
- M. O. Scully & M. S. Zubairy, "Quantum Optics," Cambridge (1997).
- S. M. Barnett & P. M. Radmore, "Methods in Theoretical Quantum Optics," Oxford (1997).
- G. グリーンスタイン, A. G. ザイアンツ,「量子論が試されるとき」,みすず書房(2014).
- 江馬一弘,「光物理学の基礎」,朝倉書店(2010).

量子情報理論

- 佐川弘幸, 吉田宣章, 「量子情報理論」, シュプリンガー・フェアラーク東京(2003).
- M. A. Nielsen & I. L. Chuang, "Quantum Computation and Quantum Information," Cambridge (2000).
- 堀田昌寛,「量子情報と時空の物理(臨時別冊・数理科学, CGSライブラリ103)」, サイエンス社(2014). 導波工学
- 國分泰雄,「光波工学」,共立出版(1999)
- 左貝潤一,「フォトニック結晶ファイバ」, コロナ社(2011).