永久磁石の直線駆動による非接触回転機構の残留磁気点モデル の考察

Model of Remnant Magnetization for Noncontact Spinning Mechanism Using Linearly

Actuated Permanent Magnets

鶴身輝*, 岡宏一**, 孫鳳***

Akira TSURUMI*, Koichi OKA**, Feng SUN***

*高知工科大学大学院,145040y@gs.kochi-tech.ac.jp **高知工科大学,oka.koichi@kochi-tech.ac.jp ***瀋陽工科大学,sunfeng2009@gmail.com

概要: 本発表では、永久磁石の直線駆動による非接触回転機構の残留磁気点モデル について発表を行う.初めに、永久磁石の直線駆動による非接触回転機構の試作装置 と回転原理を紹介し、鉄球表面の残留磁気点のモデル化を行う.次に、残留磁気点モ デルの回転特性について IEM 解析を行う. IEM 解析では、残留磁気点が1つ及び2つ の残留磁気点モデルを用いて解析を行い、得られた結果より残留磁気点モデルの回転 特性の検討を行う.

Keywords: 永久磁石,非接触回転機構,残留磁気点モデル, IEM 解析

1. 緒言

近年,永久磁石を用いた様々な非接触回転機 構が提案されている.その一つとして円筒形永 久磁石の直線駆動による非接触回転機構があ る⁽¹⁾.この機構は,配置した4つの円筒形の永 久磁石を順に浮上体に接近させ,残留磁気点を 引き付けることで浮上体を回転させる.本発表 では,永久磁石の直線駆動による非接触回転機 構の残留磁気点モデルについて発表を行う.ま ず,非接触回転機構の試作装置と回転原理を紹 介し,浮上体(鉄球)表面の残留磁気点のモデ ル化を行う.次に,残留磁気点が1つ及び2つ の残留磁気点モデルの回転特性について IEM 解析を行い,各残留磁気点モデルについての考 察を行う.

2. 試作装置と回転原理

試作装置の概略図を図1に示す.この機構は,

図1. 試作装置の概略図

浮上体を鉛直方向上に非接触浮上させ,水平方 向に回転させる機構である.浮上部分は,図1 に示している機構の中央部分で,永久磁石,ボ イスコイルモータ,センサターゲット,渦電流 センサで構成されている.回転駆動部分は,図 1に示している機構の回りの部分で,永久磁石, ボイスコイルモータ,センサターゲットで構成 されている装置を4つ配置している.4つの装 置は互いに独立しており,回転駆動部分の永久 磁石は浮上部分と同じものである.

次に、回転原理を図2より説明する. 図2は 浮上中の鉄球の鉛直上部から見た鉄球と永久 磁石だけの図である. 浮上体である鉄球の表面 には残留磁気の影響があると考えられる. 図2 中の様に残留磁気点があるとする. 永久磁石を ①の動きで鉄球に近付けることにより残留磁 気点が引き寄せられ, ②の動きで鉄球が回転す る. そして, ③の動きで永久磁石を鉄球から離 し, 同時に永久磁石を④の動きで近付けると, 残留磁気点が引き寄せられ⑤の動きで鉄球が 回転する. 同様なことを繰り返すことで鉄球が 回転する.

3. 残留磁気点のモデル化

鉄球の表面にある残留磁気点の強さが非常 に弱いため,直接鉄球の回転トルクを測れない. 回転機構の回転トルク特性を考察するため,残 留磁気点を永久磁石に置き換えモデル化を行 った.残留磁気点モデルを図3に示す.モデル では,永久磁石の1つの極を鉄球の表面の位置 に配置し,残留磁気点とする.また,永久磁石 のもう1つの極を鉄球の中心に配置する.上部 の永久磁石は鉄球の真上にある残留磁気点と し,横の永久磁石は鉄球の赤道上にある残留磁 気点とする.

4. 回転トルクの IEM 解析

残留磁気点が鉄球の赤道上に1つある場合 の IEM 解析モデルを図4に示す.図4では,鉄 球の回転角度を θ に,永久磁石を駆動させる正 弦波と余弦波の角度を ϕ に表している.磁石の 振幅Lは4mmで,永久磁石から鉄球の表面ま での距離 Dは7mmである.このモデルを用 いて回転トルクの解析を行った.永久磁石の ϕ を 30°刻みで変化させ,各 ϕ で残留磁気点を 0°~360°まで5°刻みに回転させた.解析結 果を図5に示す.グラフでは,横軸は鉄球の回

図5. 解析結果 残留磁気点1個

図7.図6の安定点の分布 転角度θ,縦軸は浮上体のZ軸周りのトルク であり,各線は永久磁石を駆動させる正弦波と 余弦波の各角度φに応じたトルクを表してい る.また,グラフ上で右下がりにトルク0と交 わっている点は安定点である.永久磁石を固定 していると,安定点が変化せず,浮上体が安定 点に留まることで回転しない.永久磁石を駆動 させることで安定点の位置が変化し,浮上体の 回転が可能になる.

しかし,図5に示している結果では,永久磁 石が動いた場合でも全ての安定点は動かず, 0°,90°,180°と270°の4点に集まって いるため,浮上体が回転できないと考えられる. しかし,実際は,この機構によって,回転制御 が可能である.

次に,図4に示しているモデルの永久磁石の 振幅 L を 10mm に,距離 D を 20mm にし,

図10.図9の安定点の分布

解析を行った.解析結果を図6に示す.図6で の最大トルクは図5より小さくなったが,安定 点は一つの点に集まらず,離れている.安定点 の分布を図7に示す.図7より,φを大きくす ると,鉄球の回転角度が実線の矢印沿いに増え ていることがわかる.逆に,φを小さくすると, 鉄球の回転角度が点線の矢印沿いに減少して いることもわかる.従って,鉄球を違うルート

図11. IEM 解析モデル 残留磁気点2個 (L=10mm, D=20mm, AとBの間45°, 赤道 上から45°上)

で両方向に回転できた.この結果より,鉄球を 回転させることが可能と確認できた.

また,2つの残留磁気点を用い,機構の回転 トルク特性を考察した.2つの残留磁気点モデ ルを図8に示す.モデルでは,振幅Lと距離D は10mmと20mmであり,赤道上の残留磁気 点Aは図4に表している残留磁気点と同じで ある.残留磁気点BはAから赤道沿いに,時 計周りに45°の所に仮定し,2つの残留磁気 点の強さは同じにした.解析結果を図9に,安 定点の分布を図10に示す.図10より,鉄球 を違うルートで両方向に回転できることがわ かった.また, φを変化させるにつれて,鉄球 の角度変化が直線に近付くこともわかった.し たがって,2つの残留磁気点を用いた場合では, 鉄球の回転安定性が1つの残留磁気点の結果 より良くなったといえる.

最後に、図11の様に2つの残留磁気点A とBを鉄球の赤道から真上の残留磁気点に近 付く方向に45°移動させて、解析を行った. 解析結果を図12に、安定点の分布を図13に 示す.これらの結果から、トルクの最大値は小 さくなるが、鉄球を同じルートで両方向に回転 でき、磁石と鉄球の角度の関係はほぼ線形にな ることがわかった.

図12. 図11での解析結果

図13.図12の安定点の分布

5. 結言

永久磁石の直線駆動による非接触回転機構 の残留磁気点モデルについて IEM 解析を行っ た.解析結果より、1つ及び2つの残留磁気点 で、鉄球を両方向に回転できることが確認でき た.2つの残留磁気点の場合は1つの残留磁気 点の場合より、回転の安定性が良くなることが わかった.

参考文献

- [1] 岡 宏一,藤原 佑輔,森本 裕樹:永久磁石の運動 制御による鉄球の非接触回転制御-回転特性の検 討-,第19回「電磁力関連のダイナミクス」シン ポジウム, no.7, pp.51-52, 2007.
- [2] 孫 鳳, 鶴身 輝, 岡 宏一: 永久磁石を用いた非接 触回転駆動機構のトルク特性, Dynamics and Design Conference 2010, no. 10-8, CD-ROM 論 文集 725, 2010.