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weak value

time symmetric formalism. We can get the probability by using the two-state
formalism which is described by the retarded state and the advanced state. We
must operate macroscopic subsystem only which interacts the measured system
in the measuring procedure.

The projective measurement lets us know which state the system is. After
the measurement, the system is fixed to the eigenstate of measured observable
with the eigenvalue which we get as the result. In quantum mechanics, the
projective measurement is explained by the interaction which makes correlation
between the system and the subsystem called ancilla. The interaction called von
Newmann interaction is written as Hint = Ap where A is a measured observable.
The initial state |ψ⟩ is written as

∑
i ci|ai⟩ with {|ai⟩} which are eigenstates for

eigenvalues {ai} of A. If we prepare the initial ancilla state as |q = 0⟩ localized
at q = 0, the state of all system becomes

∑
i ci|ai⟩|q = ai⟩ by the interaction.

The ancilla state which we can know is macroscopic state. When we know which
ancilla state is, the state collapse to the one of the eigenstates.

We now go back to the time symmetric formalism. For example, we con-
sider the projective measurement of the observable A which have {|wi⟩} as
eigenstates (Fig 2.1). For simplicity, the eigenvalues of {|wi⟩} are integers
i = · · · − 2,−1, 0, 1, 2, · · · . Let the initial state and the final state be

∑
i ci|wi⟩

and
∑

j c
′
j|wj⟩ by projective measurements. The initial state prepared at t = −T

and the final state is post-selected at t = +T . The interaction Hamiltonian Hint

is given as the von Newmann interaction.

Hint = δ(t)qA (2.8)

where q is the position of ancilla state. Since the observable A has discrete
integral eigenvalues, the canonical variable p takes discrete localized states which
are described as {|mi⟩} after the interaction. The state |mi⟩ means that it’s
momentum p is equal to i. For simplicity, The ancilla states prepared in |m0⟩.
We select the final ancilla state as |m1⟩. There is no Hamiltonian of the all
system without the interaction between ancilla and system at the measuring
point. Let the measurement be performed at t = 0. First, we see the evolution
of the retarded state of all system

∑
i ci|wi⟩|m0⟩. When the retarded state arrives

at the measurement point, the ancilla state makes a correlation with the system
state.

|ψ(t)⟩ =
{ ∑

i ci|wi⟩|m0⟩ (−T < t < 0)∑
i ci|wi⟩|mi⟩ (0 < t < +T )

(2.9)

The advanced state evolves similarly but backward in time. The ancilla state
becomes the correlated state with the system state at the measurement point.

|φ(t)⟩ =
{ ∑

j c
′
j|wj⟩|m1⟩ (0 < t < +T )∑

j c
′
j|wj⟩|m1−j⟩ (−T < t < 0)

(2.10)
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Chapter 2

Review of time symmetric
formalism

2.1 Time symmetric formalism

　The one of the time symmetric formalisms of quantum mechanics was brought
by Y. Aharonov [8]. First, this time symmetric formalism is evoked though the
idea that what is predicted by quantum mechanics is not results of measurements
but only probability distributions which are expressed time symmetrically (con-
stant under changing symmetrically both initial and final states). Let |ψ⟩ and
|φ⟩ be initial and final state in the system. The probability amplitude of the
process from the initial state to the final state under some interactions is written
as,

⟨φ|U(tf − ti)|ψ⟩ (2.1)

where ti and tf represent the time of initial and final of the system. Generally,
we interpret this process as the unitary evolution of the initial state and the
projection measurement to the final state. However this process is also inter-
preted as the projection measurement to the state U(ti − tf )|φ⟩. These two
interpretations imply that the probability of the quantum process is unchanged
under exchanging initial and final state. Quantum mechanics directly predicts
the probability of quantum processes, not the values of measurement results. We
have no reason to determine how measurements affect the system. The proba-
bility of quantum processes has time symmetric characteristics. If so, it must
be reachable to construct a time symmetrical formalism of quantum mechanics.

Recently, they reached to a time symmetric formulation of quantum
mechanics,“Two-state formalism of quantum mechanics” [9]. They formalized
the physical states by

℘̂(t) : = U(t− ti)|ψ⟩⟨φ|U †(t− tf ) (2.2)

where |ψ⟩ is initial state, |φ⟩ is final state of the quantum process. This state
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1.    Weak trajectory and quasiprobability

useful for a deeper understanding of quantum phenomena	



applications for precision measurement

weak value as a new ‘observable’ of quantum mechanics



time-symmetric formulation of quantum mechanics

 ... the result of the measurement at t has 
implications not only for what happens after 

t but also for what happened in the past ...
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consistent with all the predictions made by the standard description 

of QM	



shed new lights on quantum phenomena that were missed before 

(such as weak value, state reduction, tunneling etc.)	



may suggest generalizations of QM



weak value under dynamical evolution

Can the weak value offer an ‘intuitive picture’ ?
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P (g) = |⟨φ|UA(g)|ψ⟩|2 UA(g) = e−igA

P (g)

P (0)
=

|⟨φ|(1− igA− (g2/2)A2 + · · ·)|ψ⟩|2

|⟨φ|ψ⟩|2

= 1 + 2gImAw + g2
{
|Aw|2 − Re(A2)w

}
+O(g3)

Aw =
⟨φ|A|ψ⟩
⟨φ|ψ⟩

t = 0 t = T + V (x) xw(t) ̸= xcl(t)

R C RI CI |φk⟩ |ψ⟩

|φ1⟩ |ψ⟩ |φ1⟩ |φ2⟩ |φ3⟩ α = 0, 1 α = 1/2

⟨A⟩ : H → R(A) ⊂ RI Aw : H⊗H → CI

∑

k

|⟨φk|ψ⟩|2
⟨φk|A|ψ⟩
⟨φk|ψ⟩

= ⟨ψ|A|ψ⟩

⟨φ1|A|ψ⟩
⟨φ1|ψ⟩

|b⟩

⟨φ2|A|ψ⟩
⟨φ2|ψ⟩

⟨φn|A|ψ⟩
⟨φn|ψ⟩

K(g) = ⟨φ|UA(g)|ψ⟩

(1) WV as relative correction to transition amplitude

P (g) = |⟨φ|UA(g)|ψ⟩|2 UA(g) = e−igA

P (g)

P (0)
=

|⟨φ|(1− igA− (g2/2)A2 + · · ·)|ψ⟩|2

|⟨φ|ψ⟩|2

= 1 + 2gImAw + g2
{
|Aw|2 − Re(A2)w

}
+O(g3)

Aw =
⟨φ|A|ψ⟩
⟨φ|ψ⟩

t = 0 t = T + V (x) xw(t) ̸= xcl(t)

R C RI CI |φk⟩ |ψ⟩

|φ1⟩ |ψ⟩ |φ1⟩ |φ2⟩ |φ3⟩ α = 0, 1 α = 1/2

⟨A⟩ : H → R(A) ⊂ RI Aw : H⊗H → CI

∑

k

|⟨φk|ψ⟩|2
⟨φk|A|ψ⟩
⟨φk|ψ⟩

= ⟨ψ|A|ψ⟩

⟨φ1|A|ψ⟩
⟨φ1|ψ⟩

|b⟩

⟨φ2|A|ψ⟩
⟨φ2|ψ⟩

⟨φn|A|ψ⟩
⟨φn|ψ⟩

K(g) = ⟨φ|UA(g)|ψ⟩

(1) WV as relative correction to transition amplitude

P (g) = |⟨φ|UA(g)|ψ⟩|2 UA(g) = e−igA

P (g)

P (0)
=

|⟨φ|(1− igA− (g2/2)A2 + · · ·)|ψ⟩|2

|⟨φ|ψ⟩|2

= 1 + 2gImAw + g2
{
|Aw|2 − Re(A2)w

}
+O(g3)

Aw =
⟨φ|A|ψ⟩
⟨φ|ψ⟩

t = 0 t = T + V (x) xw(t) ̸= xcl(t)

R C RI CI |φk⟩ |ψ⟩

|φ1⟩ |ψ⟩ |φ1⟩ |φ2⟩ |φ3⟩ α = 0, 1 α = 1/2

⟨A⟩ : H → R(A) ⊂ RI Aw : H⊗H → CI

∑

k

|⟨φk|ψ⟩|2
⟨φk|A|ψ⟩
⟨φk|ψ⟩

= ⟨ψ|A|ψ⟩

⟨φ1|A|ψ⟩
⟨φ1|ψ⟩

|b⟩

⟨φ2|A|ψ⟩
⟨φ2|ψ⟩

⟨φn|A|ψ⟩
⟨φn|ψ⟩

K(g) = ⟨φ|UA(g)|ψ⟩

3

S�

P

S+

x

y

y

i

y

f

FIG. 1: This figure demonstrate Young’s double slit experi-
ment. The particle is localized around S± at time t = 0 and
arrived at P at time t = T . We will put the position of S± and
P as (±x

i

, y

i

) and (x
f
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), respectively. This particle cause
interference on the screen. Orange and green filled curves
represent the transition probability. The green filled curve
describes the transition probability in the case of a superpo-
sition of the eigenstate of the position as a pre-selected state.
The orange filled curve describes the transition probability in
the case of a superposition of Gauss distribution around S±
as a pre-selected state.

of the particle localized around these slits at t = 0. We
assume that the Hamiltonian of the object system can
be separated in the x and y direction and is chosen not
to vanish the transition amplitude between two points,
and then a state in the y direction does not contribute
to the weak value in the x direction due to its definition.
We will ignore any dependence on the y axis. We put a
superposition of two position eigenstates as a pre-selected
state,
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measurement at the point P .
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if we take (10) and (11) as pre- and post-

selected state, respectively. The interference pattern does

not decrease as far from the light source because the
momentum is completely uncertain when we choose a
pre-selected state as eigenstate of the position, and the
particle will reach the screen immediately after passing
through the double slit. This picture seems contradict
the experimental fact. If we choose a super position of
Gauss distribution as pre-selected state, we can demon-
strate the experimental result as a green line in FIG.1.
However, we will consider the super position the eigen-
state of the position for simplicity.
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By using new states | ±i = | ± x
i

i/
p
2, we define transi-

tion amplitudes,

K±(↵) := h 
f

|u
p

(↵)U(T )| ±i. (19)

The interference is caused by the phase di↵erence be-
tween K+(↵) and K�(↵). In the case of this exam-
ple, the post-selected state is eigenstate of the posi-
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i. Because u†
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u†
p

(↵)|x
f

i = |x
f

� ↵i, u†
p

(↵) moves the position x
f

to
x
f
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T
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We considered time evolution and prepare a pre-selected
state at t = 0 and a post-selected state at t = T and
weakly measure a momentum p at t = T . Relations
between (1) and (20) are A = p, | 

f

i = | i, and U(t
f

�
t
i

)| 
i

i = |�i. Because the imaginary part of weak values
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time-dependent (dynamical) weak value

postselection:

defined by the initial state |ψ⟩ of the meter, where {Q,P} :=
QP + PQ is the anticommutator. We also have

d∆P

dg
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g=0

= 2VarP (ψ) · ImAw,

where
VarP (ψ) := ExP 2(ψ)− (ExP (ψ))
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√
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like the expectation value, the dynamical weak value satisfiesstate happens to be the time developed pre-selected state. As such, for the unitary time

development U(t) = exp(−iHt/!) governed by the Hamiltonian H, the weak value Aw(t)

obeys the equation,

d

dt
Aw(t) = − i

!
⟨ψ|U(T − t) [A,H]U(t)|φ⟩

⟨ψ|U(T )|φ⟩

= − i

! [A,H]w(t), (3)

which is analogues to one stipulated by the Ehrenfest theorem for the expectation value,

despite that Aw(t) is complex in general.

In what follows we consider the system of a particle of mass m under the non-relativistic

Hamiltonian H = p2

2m + V (x). If, in particular, the particle is free V (x) = 0, by putting p

and x for the observable A in (3) we find that the momentum weak value pw and the position

weak value xw obey

d

dt
pw(t) = 0, (4)

d

dt
xw(t) =

1

m
pw(t). (5)

It then follows from (4) and (5) that xw(t) is a linear (complex) function of t. This implies

that xw(t) is a real function during the entire interval t ∈ [0, T ] if and only if both the initial

and final values xw(0) and xw(T ) are real. This occurs, for instance, when both of the two

selections are made by position eigenstates, |φ⟩ = |xi⟩ and |ψ⟩ = |xf ⟩, in which case we have

the endpoints, xw(0) = xi and xw(T ) = xf , and accordingly the position weak value, or the

weak trajectory,

xw(t) =
⟨xf |U(T − t)xU(t)|xi⟩

⟨xf |U(T )|xi⟩
, (6)

coincides with the classical trajectory,

xw(t) = xcl(t) =
(xf − xi)t+ xiT

T
. (7)

We thus learn that, at least in the simple situation of a free particle residing at a particular

location at the ends t = 0 and t = T , the particle trajectory in quantum mechanics viewed in

terms of the weak value provides a reasonable intuitive picture of the location of the particle

during the period [0, T ]: it follows precisely the classical trajectory. This assuring feature of

the weak trajectory will, of course, be no longer valid when the particle is not free, or when

the particle does not reside at a particular location at the ends. These two cases where the

simple outcome cannot be expected possess distinct characteristics on their own.

In the former case, despite that the weak trajectory will give a different path from the

classical one, it still yields some unique path which may be given a physical significance in

one way or another. The latter case, where the particle can reside at more than one points,

occurs if we choose pre- or post-selections by a superposition of more than one position

eigenstates. Obviously, this poses a more serious problem for the interpretation of the weak

trajectory, because of the nonlocality inherent to the generic quantum states. From the next

section, we shall provide a case study of this latter case to examine what happens when the

pre-selection is made nonlocal, starting with the typical example offered by the double slit

experiment and then generalizing it gradually. In the last example, we touch upon the case

of Lloyd’s mirror, where the element of the former case is also involved.

4

Ehrenfest theorem for the weak value
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FIG. 1: This figure demonstrate Young’s double slit experi-
ment. The particle is localized around S± at time t = 0 and
arrived at P at time t = T . We will put the position of S± and
P as (±x

i

, y

i

) and (x
f

, y

f

), respectively. This particle cause
interference on the screen. Orange and green filled curves
represent the transition probability. The green filled curve
describes the transition probability in the case of a superpo-
sition of the eigenstate of the position as a pre-selected state.
The orange filled curve describes the transition probability in
the case of a superposition of Gauss distribution around S±
as a pre-selected state.

of the particle localized around these slits at t = 0. We
assume that the Hamiltonian of the object system can
be separated in the x and y direction and is chosen not
to vanish the transition amplitude between two points,
and then a state in the y direction does not contribute
to the weak value in the x direction due to its definition.
We will ignore any dependence on the y axis. We put a
superposition of two position eigenstates as a pre-selected
state,

| 
i

i = |x
i

i+ |� x
i

ip
2

. (11)

We put a point eigenstate at t = T as a post-selected
state which represents a point on the screen,

| 
f

i = |x
f

i, (12)

where the post-selected state | 
f

i coincident with the the
measurement at the point P .
We will put the Hamiltonian of this system

H =
p2

2m
, (13)

where m is the mass of the particle, and p is a momen-
tum alongside x direction. The unitary evolution of this
particle is described by

U(t) = exp


� iHt

}

�
. (14)

The transition probability is |h 
f

|U(T )| 
i

i|2 =
cos2

�
m

}
xfxi

T

�
if we take (10) and (11) as pre- and post-

selected state, respectively. The interference pattern does

not decrease as far from the light source because the
momentum is completely uncertain when we choose a
pre-selected state as eigenstate of the position, and the
particle will reach the screen immediately after passing
through the double slit. This picture seems contradict
the experimental fact. If we choose a super position of
Gauss distribution as pre-selected state, we can demon-
strate the experimental result as a green line in FIG.1.
However, we will consider the super position the eigen-
state of the position for simplicity.
Firstly, let us observe a weak value of momentum p

w

through quantum interference. In doing so, we put the
transition amplitude as

K(↵) := h 
f

|u
p

(↵)U(T )| 
i

i, (15)

u
p

(↵) := exp [�i↵p] . (16)

To observe interference, we introduce an identity opera-
tor to divide the transition amplitude K(↵),

I =
Z 1

0
dx|xihx|+

Z 0

�1
dx|xihx|, (17)

where this is correspond with (4) in Sec. I. Let us insert
the identity operator (17) to (15), then the transition
amplitude is split into to two parts,
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By using new states | ±i = | ± x
i

i/
p
2, we define transi-

tion amplitudes,

K±(↵) := h 
f

|u
p

(↵)U(T )| ±i. (19)

The interference is caused by the phase di↵erence be-
tween K+(↵) and K�(↵). In the case of this exam-
ple, the post-selected state is eigenstate of the posi-
tion |x

f

i. Because u†
p

(↵) is the translation operator

u†
p

(↵)|x
f

i = |x
f

� ↵i, u†
p

(↵) moves the position x
f

to
x
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� ↵ alongside the screen. The weak value of momen-
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w

and p�
w

are
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i
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f

|U(T )| ±i
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T
. (21)

We considered time evolution and prepare a pre-selected
state at t = 0 and a post-selected state at t = T and
weakly measure a momentum p at t = T . Relations
between (1) and (20) are A = p, | 

f

i = | i, and U(t
f

�
t
i

)| 
i

i = |�i. Because the imaginary part of weak values
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FIG. 2: An oblique view of the weak value x

w

(t) which is
function of t. At time t = 0, Re [x

w

(0)] is at the intermedi-
aty point between two slits however Im [x

w

(0)] becomes large
when the transition probability is small. At time t = T , the
weak value x

w

(t) is on the screen. Orange and blue lines are
x

w

(t) projected onto each planes.

Im [x
w

]|K(0)|2

x

f

FIG. 3: The horizontal line is x

f

. The yellow curve repre-
sents the transition probability. The solid curve is Im[x

w

(t)]
at t = 0. Im [x

w

(t)] diverges when the transition probability
|K(0)|2 becomes small.

of momentum p±
w

are zero for arbitrary x
f

, the lefthand
side of (10) becomes

Im


p
w

� p�
w

|K�(0)|2
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|K+(0)|2

|K(0)|2

�

= Im [p
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T
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From this, it shows that the variation of interference
terms is represented by the imaginary part of the weak
value p

w

. The variation of interference fringes correspond
with the imaginary part of the weak value p

w

.
We will explain the real part of the weak value p

w

. The
weak value of momentum p+

w

and p�
w

, which expresses
the moving particle between two eigenstates of the point,
coincident with the value of the classical motion. The
real part of the weak value p

w

is equal to the average

of these two weak values p+
w

and p�
w

, Re [p
w

] =
p

+
w+p

�
w

2 ,
which means that Re [p

w

] is equivalent to the average of
the momentum for each classical path.

IV. THE WEAK VALUE OF THE POSITION

The interpretation of weak values are di�cult due to
its complexity. However, we showed that the imaginary
part of the weak value for the momentum represents in-
terference e↵ect when we consider the Young’s double
slit experiment. Weak values are weakly measured not

to disturb the object system and will have a physical sig-
nificance. Einstein et al. said about an element of phys-
ical reality in [11]: If, without in any way disturbing a
system, we can predict with certainly (i.e., with probabil-
ity equal to unity) the value of a physical quantity, then
there exists an element of physical reality corresponding
to this physical quantity. We may treat a weak value as
an element of physical reality because, in weak measure-
ment, without disturbing a system, we can obtain the
weak value[12].

Let us consider the weak value of the position x
w

in
terms of the element of physical reality. we will prepare
the pre- and post-selected state as (10) and (11), respec-
tively.

x
w

(t) =
h 

f

|U(T � t)xU(t)| 
i

i
h 

f

|U(T )| 
i

i

=
x
f

t

T
+ i

x
i

(t� T ) tan
�
m

}
xfxi

T

�

T
(23)

We prepared a pre-selected state at t = 0 and a post-
selected state at t = T and weakly measure x at time t.
Relations between (1) and (23) are A = x, U(t�T )| 

f

i =
| i, and U(t)| 

i

i = |�i, respectively. The real part of the
weak value x

w

corresponds with the average of classical
trajectories moving each slit to the screen. The imagi-
nary part of the weak value x

w

becomes enormous where
the transition probability is small. To demonstrate this,
we will show graphs in FIG 2,3. In FIG.2, since we put
the post-selected state as the eigenstate of the position,
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FIG. 1: This figure demonstrate Young’s double slit experi-
ment. The particle is localized around S± at time t = 0 and
arrived at P at time t = T . We will put the position of S± and
P as (±x

i

, y

i

) and (x
f

, y

f

), respectively. This particle cause
interference on the screen. Orange and green filled curves
represent the transition probability. The green filled curve
describes the transition probability in the case of a superpo-
sition of the eigenstate of the position as a pre-selected state.
The orange filled curve describes the transition probability in
the case of a superposition of Gauss distribution around S±
as a pre-selected state.

of the particle localized around these slits at t = 0. We
assume that the Hamiltonian of the object system can
be separated in the x and y direction and is chosen not
to vanish the transition amplitude between two points,
and then a state in the y direction does not contribute
to the weak value in the x direction due to its definition.
We will ignore any dependence on the y axis. We put a
superposition of two position eigenstates as a pre-selected
state,
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We put a point eigenstate at t = T as a post-selected
state which represents a point on the screen,
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i, (12)

where the post-selected state | 
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i coincident with the the
measurement at the point P .

We will put the Hamiltonian of this system

H =
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where m is the mass of the particle, and p is a momen-
tum alongside x direction. The unitary evolution of this
particle is described by
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
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if we take (10) and (11) as pre- and post-

selected state, respectively. The interference pattern does

not decrease as far from the light source because the
momentum is completely uncertain when we choose a
pre-selected state as eigenstate of the position, and the
particle will reach the screen immediately after passing
through the double slit. This picture seems contradict
the experimental fact. If we choose a super position of
Gauss distribution as pre-selected state, we can demon-
strate the experimental result as a green line in FIG.1.
However, we will consider the super position the eigen-
state of the position for simplicity.

Firstly, let us observe a weak value of momentum p
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through quantum interference. In doing so, we put the
transition amplitude as
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To observe interference, we introduce an identity opera-
tor to divide the transition amplitude K(↵),
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where this is correspond with (4) in Sec. I. Let us insert
the identity operator (17) to (15), then the transition
amplitude is split into to two parts,
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We considered time evolution and prepare a pre-selected
state at t = 0 and a post-selected state at t = T and
weakly measure a momentum p at t = T . Relations
between (1) and (20) are A = p, | 
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FIG. 1: This figure demonstrate Young’s double slit experi-
ment. The particle is localized around S± at time t = 0 and
arrived at P at time t = T . We will put the position of S± and
P as (±x
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, y
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) and (x
f

, y

f

), respectively. This particle cause
interference on the screen. Orange and green filled curves
represent the transition probability. The green filled curve
describes the transition probability in the case of a superpo-
sition of the eigenstate of the position as a pre-selected state.
The orange filled curve describes the transition probability in
the case of a superposition of Gauss distribution around S±
as a pre-selected state.

of the particle localized around these slits at t = 0. We
assume that the Hamiltonian of the object system can
be separated in the x and y direction and is chosen not
to vanish the transition amplitude between two points,
and then a state in the y direction does not contribute
to the weak value in the x direction due to its definition.
We will ignore any dependence on the y axis. We put a
superposition of two position eigenstates as a pre-selected
state,
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We put a point eigenstate at t = T as a post-selected
state which represents a point on the screen,
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where the post-selected state | 
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i coincident with the the
measurement at the point P .
We will put the Hamiltonian of this system

H =
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where m is the mass of the particle, and p is a momen-
tum alongside x direction. The unitary evolution of this
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momentum is completely uncertain when we choose a
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particle will reach the screen immediately after passing
through the double slit. This picture seems contradict
the experimental fact. If we choose a super position of
Gauss distribution as pre-selected state, we can demon-
strate the experimental result as a green line in FIG.1.
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Firstly, let us observe a weak value of momentum p

w

through quantum interference. In doing so, we put the
transition amplitude as

K(↵) := h 
f

|u
p

(↵)U(T )| 
i

i, (15)

u
p

(↵) := exp [�i↵p] . (16)

To observe interference, we introduce an identity opera-
tor to divide the transition amplitude K(↵),

I =
Z 1

0
dx|xihx|+

Z 0

�1
dx|xihx|, (17)

where this is correspond with (4) in Sec. I. Let us insert
the identity operator (17) to (15), then the transition
amplitude is split into to two parts,

K(↵) = h 
f

|u
p

(↵)U(T )| 
i

i

=
h 

f

|u
p

(↵)U(T )|� x
i

ip
2

+
h 

f

|u
p

(↵)U(T )|x
i

ip
2

. (18)

By using new states | ±i = | ± x
i

i/
p
2, we define transi-

tion amplitudes,

K±(↵) := h 
f

|u
p

(↵)U(T )| ±i. (19)

The interference is caused by the phase di↵erence be-
tween K+(↵) and K�(↵). In the case of this exam-
ple, the post-selected state is eigenstate of the posi-
tion |x

f

i. Because u†
p

(↵) is the translation operator

u†
p

(↵)|x
f

i = |x
f

� ↵i, u†
p

(↵) moves the position x
f

to
x
f

� ↵ alongside the screen. The weak value of momen-
tum p

w

, p+
w

and p�
w

are

p
w

=
h 

f

|pU(T )| 
i

i
h 

f

|U(T )| 
i

i = m
x
f

+ ix
i

tan
�
m

}
xfxi

T

�

T
,

(20)

p±
w

=
h 

f

|pU(T )| ±i
h 

f

|U(T )| ±i
= m

x
f

⌥ x
i

T
. (21)

We considered time evolution and prepare a pre-selected
state at t = 0 and a post-selected state at t = T and
weakly measure a momentum p at t = T . Relations
between (1) and (20) are A = p, | 
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FIG. 1: This figure demonstrate Young’s double slit experi-
ment. The particle is localized around S± at time t = 0 and
arrived at P at time t = T . We will put the position of S± and
P as (±x
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, y

i

) and (x
f

, y

f

), respectively. This particle cause
interference on the screen. Orange and green filled curves
represent the transition probability. The green filled curve
describes the transition probability in the case of a superpo-
sition of the eigenstate of the position as a pre-selected state.
The orange filled curve describes the transition probability in
the case of a superposition of Gauss distribution around S±
as a pre-selected state.

of the particle localized around these slits at t = 0. We
assume that the Hamiltonian of the object system can
be separated in the x and y direction and is chosen not
to vanish the transition amplitude between two points,
and then a state in the y direction does not contribute
to the weak value in the x direction due to its definition.
We will ignore any dependence on the y axis. We put a
superposition of two position eigenstates as a pre-selected
state,
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We put a point eigenstate at t = T as a post-selected
state which represents a point on the screen,

| 
f

i = |x
f

i, (12)

where the post-selected state | 
f

i coincident with the the
measurement at the point P .
We will put the Hamiltonian of this system

H =
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2m
, (13)

where m is the mass of the particle, and p is a momen-
tum alongside x direction. The unitary evolution of this
particle is described by
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if we take (10) and (11) as pre- and post-

selected state, respectively. The interference pattern does

not decrease as far from the light source because the
momentum is completely uncertain when we choose a
pre-selected state as eigenstate of the position, and the
particle will reach the screen immediately after passing
through the double slit. This picture seems contradict
the experimental fact. If we choose a super position of
Gauss distribution as pre-selected state, we can demon-
strate the experimental result as a green line in FIG.1.
However, we will consider the super position the eigen-
state of the position for simplicity.
Firstly, let us observe a weak value of momentum p
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through quantum interference. In doing so, we put the
transition amplitude as
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We considered time evolution and prepare a pre-selected
state at t = 0 and a post-selected state at t = T and
weakly measure a momentum p at t = T . Relations
between (1) and (20) are A = p, | 
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FIG. 1: This figure demonstrate Young’s double slit experi-
ment. The particle is localized around S± at time t = 0 and
arrived at P at time t = T . We will put the position of S± and
P as (±x
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, y

i

) and (x
f

, y

f

), respectively. This particle cause
interference on the screen. Orange and green filled curves
represent the transition probability. The green filled curve
describes the transition probability in the case of a superpo-
sition of the eigenstate of the position as a pre-selected state.
The orange filled curve describes the transition probability in
the case of a superposition of Gauss distribution around S±
as a pre-selected state.

of the particle localized around these slits at t = 0. We
assume that the Hamiltonian of the object system can
be separated in the x and y direction and is chosen not
to vanish the transition amplitude between two points,
and then a state in the y direction does not contribute
to the weak value in the x direction due to its definition.
We will ignore any dependence on the y axis. We put a
superposition of two position eigenstates as a pre-selected
state,
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We put a point eigenstate at t = T as a post-selected
state which represents a point on the screen,
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where the post-selected state | 
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i coincident with the the
measurement at the point P .

We will put the Hamiltonian of this system
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where m is the mass of the particle, and p is a momen-
tum alongside x direction. The unitary evolution of this
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selected state, respectively. The interference pattern does

not decrease as far from the light source because the
momentum is completely uncertain when we choose a
pre-selected state as eigenstate of the position, and the
particle will reach the screen immediately after passing
through the double slit. This picture seems contradict
the experimental fact. If we choose a super position of
Gauss distribution as pre-selected state, we can demon-
strate the experimental result as a green line in FIG.1.
However, we will consider the super position the eigen-
state of the position for simplicity.
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We considered time evolution and prepare a pre-selected
state at t = 0 and a post-selected state at t = T and
weakly measure a momentum p at t = T . Relations
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FIG. 1: This figure demonstrate Young’s double slit experi-
ment. The particle is localized around S± at time t = 0 and
arrived at P at time t = T . We will put the position of S± and
P as (±x

i

, y

i

) and (x
f

, y

f

), respectively. This particle cause
interference on the screen. Orange and green filled curves
represent the transition probability. The green filled curve
describes the transition probability in the case of a superpo-
sition of the eigenstate of the position as a pre-selected state.
The orange filled curve describes the transition probability in
the case of a superposition of Gauss distribution around S±
as a pre-selected state.

of the particle localized around these slits at t = 0. We
assume that the Hamiltonian of the object system can
be separated in the x and y direction and is chosen not
to vanish the transition amplitude between two points,
and then a state in the y direction does not contribute
to the weak value in the x direction due to its definition.
We will ignore any dependence on the y axis. We put a
superposition of two position eigenstates as a pre-selected
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We put a point eigenstate at t = T as a post-selected
state which represents a point on the screen,

| 
f

i = |x
f

i, (12)
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i coincident with the the
measurement at the point P .
We will put the Hamiltonian of this system
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where m is the mass of the particle, and p is a momen-
tum alongside x direction. The unitary evolution of this
particle is described by

U(t) = exp


� iHt

}

�
. (14)

The transition probability is |h 
f

|U(T )| 
i

i|2 =
cos2

�
m

}
xfxi

T

�
if we take (10) and (11) as pre- and post-

selected state, respectively. The interference pattern does

not decrease as far from the light source because the
momentum is completely uncertain when we choose a
pre-selected state as eigenstate of the position, and the
particle will reach the screen immediately after passing
through the double slit. This picture seems contradict
the experimental fact. If we choose a super position of
Gauss distribution as pre-selected state, we can demon-
strate the experimental result as a green line in FIG.1.
However, we will consider the super position the eigen-
state of the position for simplicity.
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We considered time evolution and prepare a pre-selected
state at t = 0 and a post-selected state at t = T and
weakly measure a momentum p at t = T . Relations
between (1) and (20) are A = p, | 
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From this, it shows that the variation of interference
terms is represented by the imaginary part of the weak
value p

w

. The variation of interference fringes correspond
with the imaginary part of the weak value p

w

.
We will explain the real part of the weak value p

w

. The
weak value of momentum p+

w

and p�
w

, which expresses
the moving particle between two eigenstates of the point,
coincident with the value of the classical motion. The
real part of the weak value p

w

is equal to the average

of these two weak values p+
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and p�
w

, Re [p
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] =
p
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�
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2 ,
which means that Re [p
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] is equivalent to the average of
the momentum for each classical path.

IV. THE WEAK VALUE OF THE POSITION

The interpretation of weak values are di�cult due to
its complexity. However, we showed that the imaginary
part of the weak value for the momentum represents in-
terference e↵ect when we consider the Young’s double
slit experiment. Weak values are weakly measured not

to disturb the object system and will have a physical sig-
nificance. Einstein et al. said about an element of phys-
ical reality in [11]: If, without in any way disturbing a
system, we can predict with certainly (i.e., with probabil-
ity equal to unity) the value of a physical quantity, then
there exists an element of physical reality corresponding
to this physical quantity. We may treat a weak value as
an element of physical reality because, in weak measure-
ment, without disturbing a system, we can obtain the
weak value[12].

Let us consider the weak value of the position x
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in
terms of the element of physical reality. we will prepare
the pre- and post-selected state as (10) and (11), respec-
tively.
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We prepared a pre-selected state at t = 0 and a post-
selected state at t = T and weakly measure x at time t.
Relations between (1) and (23) are A = x, U(t�T )| 

f

i =
| i, and U(t)| 

i

i = |�i, respectively. The real part of the
weak value x

w

corresponds with the average of classical
trajectories moving each slit to the screen. The imagi-
nary part of the weak value x

w

becomes enormous where
the transition probability is small. To demonstrate this,
we will show graphs in FIG 2,3. In FIG.2, since we put
the post-selected state as the eigenstate of the position,
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FIG. 1: This figure demonstrate Young’s double slit experi-
ment. The particle is localized around S± at time t = 0 and
arrived at P at time t = T . We will put the position of S± and
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) and (x
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), respectively. This particle cause
interference on the screen. Orange and green filled curves
represent the transition probability. The green filled curve
describes the transition probability in the case of a superpo-
sition of the eigenstate of the position as a pre-selected state.
The orange filled curve describes the transition probability in
the case of a superposition of Gauss distribution around S±
as a pre-selected state.

of the particle localized around these slits at t = 0. We
assume that the Hamiltonian of the object system can
be separated in the x and y direction and is chosen not
to vanish the transition amplitude between two points,
and then a state in the y direction does not contribute
to the weak value in the x direction due to its definition.
We will ignore any dependence on the y axis. We put a
superposition of two position eigenstates as a pre-selected
state,

| 
i

i = |x
i

i+ |� x
i

ip
2

. (11)

We put a point eigenstate at t = T as a post-selected
state which represents a point on the screen,
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where the post-selected state | 
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i coincident with the the
measurement at the point P .

We will put the Hamiltonian of this system

H =
p2

2m
, (13)

where m is the mass of the particle, and p is a momen-
tum alongside x direction. The unitary evolution of this
particle is described by
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if we take (10) and (11) as pre- and post-

selected state, respectively. The interference pattern does

not decrease as far from the light source because the
momentum is completely uncertain when we choose a
pre-selected state as eigenstate of the position, and the
particle will reach the screen immediately after passing
through the double slit. This picture seems contradict
the experimental fact. If we choose a super position of
Gauss distribution as pre-selected state, we can demon-
strate the experimental result as a green line in FIG.1.
However, we will consider the super position the eigen-
state of the position for simplicity.

Firstly, let us observe a weak value of momentum p
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through quantum interference. In doing so, we put the
transition amplitude as
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tor to divide the transition amplitude K(↵),
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where this is correspond with (4) in Sec. I. Let us insert
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The interference is caused by the phase di↵erence be-
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We considered time evolution and prepare a pre-selected
state at t = 0 and a post-selected state at t = T and
weakly measure a momentum p at t = T . Relations
between (1) and (20) are A = p, | 
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ment. The particle is localized around S± at time t = 0 and
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), respectively. This particle cause
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The orange filled curve describes the transition probability in
the case of a superposition of Gauss distribution around S±
as a pre-selected state.

of the particle localized around these slits at t = 0. We
assume that the Hamiltonian of the object system can
be separated in the x and y direction and is chosen not
to vanish the transition amplitude between two points,
and then a state in the y direction does not contribute
to the weak value in the x direction due to its definition.
We will ignore any dependence on the y axis. We put a
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not decrease as far from the light source because the
momentum is completely uncertain when we choose a
pre-selected state as eigenstate of the position, and the
particle will reach the screen immediately after passing
through the double slit. This picture seems contradict
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From this, it shows that the variation of interference
terms is represented by the imaginary part of the weak
value p

w

. The variation of interference fringes correspond
with the imaginary part of the weak value p

w

.
We will explain the real part of the weak value p

w

. The
weak value of momentum p+

w

and p�
w

, which expresses
the moving particle between two eigenstates of the point,
coincident with the value of the classical motion. The
real part of the weak value p

w

is equal to the average

of these two weak values p+
w

and p�
w

, Re [p
w

] =
p

+
w+p

�
w

2 ,
which means that Re [p

w

] is equivalent to the average of
the momentum for each classical path.

IV. THE WEAK VALUE OF THE POSITION

The interpretation of weak values are di�cult due to
its complexity. However, we showed that the imaginary
part of the weak value for the momentum represents in-
terference e↵ect when we consider the Young’s double
slit experiment. Weak values are weakly measured not

to disturb the object system and will have a physical sig-
nificance. Einstein et al. said about an element of phys-
ical reality in [11]: If, without in any way disturbing a
system, we can predict with certainly (i.e., with probabil-
ity equal to unity) the value of a physical quantity, then
there exists an element of physical reality corresponding
to this physical quantity. We may treat a weak value as
an element of physical reality because, in weak measure-
ment, without disturbing a system, we can obtain the
weak value[12].

Let us consider the weak value of the position x
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terms of the element of physical reality. we will prepare
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We prepared a pre-selected state at t = 0 and a post-
selected state at t = T and weakly measure x at time t.
Relations between (1) and (23) are A = x, U(t�T )| 

f

i =
| i, and U(t)| 

i

i = |�i, respectively. The real part of the
weak value x

w

corresponds with the average of classical
trajectories moving each slit to the screen. The imagi-
nary part of the weak value x

w

becomes enormous where
the transition probability is small. To demonstrate this,
we will show graphs in FIG 2,3. In FIG.2, since we put
the post-selected state as the eigenstate of the position,

real imaginary
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exp [−iαp]. Since p is the generator of translation, we have V †
p (α)|xf ⟩ =

|xf − α⟩. The probability amplitude is then K(α) = ⟨ψ|Vp(α)|φ(T )⟩, and the
transition probability (8) is just |K(0)|2. Now, the relevant completeness re-

lation of the intermediate states is I =
∫∞
0 dx|x⟩⟨x|+

∫ 0
−∞ dx|x⟩⟨x|, according

to which the transition amplitude splits as K(α) = K+(α) + K−(α), where
K±(α) = ⟨ψ|Vp(α)|φ±(T )⟩/

√
2 with |φ±(T )⟩ = U(T )| ± xi⟩.

Under our choice of selections, on the screen at t = T the weak value of
the momentum pw and those for the partial processes (p±)w are given by

pw =
⟨ψ| p |φ(T )⟩
⟨ψ|φ(T )⟩ = m

xf + ixi tan
(
m
!

xfxi

T

)

T
, (9)

(p±)w =
⟨ψ| p |φ±(T )⟩
⟨ψ|φ±(T )⟩

= m
xf ∓ xi

T
. (10)

Since (p±)w are both real, the index (5) turns out to be

I = Im pw = m
xi tan

(
m
!

xfxi

T

)

T
. (11)

We thus see that the index I is just the imaginary part Im pw, which diverges
when the interference becomes completely destructive K(0) → 0 and vanishes
when it is maximally constructive.

4 Weak trajectory and which path information

For a one particle system, the most tangible source of physical quantity is
arguably the trajectory of the particle, so let us examine how the weak value
of the position x varies with time. This is done by setting formally the pre-
selected state by the retarded state |φ(t)⟩ = U(t)|φ⟩ and the post-selected
state by the advanced state |ψ(t)⟩ = U(t− T )|ψ⟩ for 0 ≤ t ≤ T . The resultant
weak value,

xw(t) :=
⟨ψ(t)|x|φ(t)⟩
⟨ψ(t)|φ(t)⟩ =

⟨φ|U(T − t)xU(t)|ψ⟩
⟨φ|U(T )|ψ⟩ (12)

is in general complex-valued, but it can be readily seen that, if both |φ⟩ and
|ψ⟩ are position eigenstates, xw(t) becomes real and agrees with the classical
trajectory.

Now, if we instead have the superposition state for |φ⟩ given in (6), we find

xw(t) =
xf t

T
+ i

xi(t− T ) tan
(
m
!

xfxi

T

)

T
. (13)

We then notice that the real part Rexw(t) corresponds to the average of the
two classical trajectories coming from the two slits S± (see FIG. 2). Although
this is consistent with the real part of the momentum Re pw in (9), being
the average (Rexw(0) = 0 in particular), it cannot reasonably be regarded
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Fig. 1 Our simplified double slit (gedanken) experiment. The orange filled curve describes
the transition probability when the slits are point-like, whereas the dotted curve describes
the transition probability for the case where the slits are finite in size and the particle
distribution is given by a Gaussian distribution around S±.

3 Double slit experiment

We now illustrate our argument by the double slit experiment. Consider a
(massive) particle passing through two narrow slits S± and later hits the screen
to form an interference pattern (see FIG.1). To make our analysis simpler, we
choose our state at t = 0 by the superposition of two localized states,

|ψ⟩ = 1√
2
(|xi⟩+ |− xi⟩) . (6)

Our post-selection at time t = T is then made by the position eigenstate at
x = xf ,

|φ⟩ = |xf ⟩, (7)

corresponding to the point where the particle is spotted.
Ignoring the dynamics in the y-direction which plays no essential role in

the following discussion, we just take account of the dynamics of free motion
in the x-direction described by the Hamiltonian, H = p2/2m, where m is the
mass of the particle and p the momentum along x. The time evolution is then
given by the unitary transformation U(t) = exp (−iHt/!), and for the present
process the transition probability reads

|⟨ψ|U(T )|φ⟩|2 =
m

π!T cos2
(m
!
xfxi

T

)
. (8)

This picture of interference yields undiminished fringes and is admittedly too
simplistic, and perhaps one can render it more realistic by considering a Gaus-
sian distribution for the initial state (see FIG.1). However, it will be seen that
our picture is sufficient to capture the key feature of the weak value on the
wave-particle duality.

To put the present case in the general context, we introduce |φ(T )⟩ :=
U(T )|φ⟩ and consider the family of post-selected states V †

p (α)|xf ⟩ with Vp(α) =
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the transition probability when the slits are point-like, whereas the dotted curve describes
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This picture of interference yields undiminished fringes and is admittedly too
simplistic, and perhaps one can render it more realistic by considering a Gaus-
sian distribution for the initial state (see FIG.1). However, it will be seen that
our picture is sufficient to capture the key feature of the weak value on the
wave-particle duality.

To put the present case in the general context, we introduce |φ(T )⟩ :=
U(T )|φ⟩ and consider the family of post-selected states V †

p (α)|xf ⟩ with Vp(α) =
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exp [−iαp]. Since p is the generator of translation, we have V †
p (α)|xf ⟩ =

|xf − α⟩. The probability amplitude is then K(α) = ⟨ψ|Vp(α)|φ(T )⟩, and the
transition probability (8) is just |K(0)|2. Now, the relevant completeness re-

lation of the intermediate states is I =
∫∞
0 dx|x⟩⟨x|+

∫ 0
−∞ dx|x⟩⟨x|, according

to which the transition amplitude splits as K(α) = K+(α) + K−(α), where
K±(α) = ⟨ψ|Vp(α)|φ±(T )⟩/

√
2 with |φ±(T )⟩ = U(T )| ± xi⟩.

Under our choice of selections, on the screen at t = T the weak value of
the momentum pw and those for the partial processes (p±)w are given by

pw =
⟨ψ| p |φ(T )⟩
⟨ψ|φ(T )⟩ = m

xf + ixi tan
(
m
!

xfxi

T

)

T
, (9)

(p±)w =
⟨ψ| p |φ±(T )⟩
⟨ψ|φ±(T )⟩

= m
xf ∓ xi

T
. (10)

Since (p±)w are both real, the index (5) turns out to be

I = Im pw = m
xi tan

(
m
!

xfxi

T

)

T
. (11)

We thus see that the index I is just the imaginary part Im pw, which diverges
when the interference becomes completely destructive K(0) → 0 and vanishes
when it is maximally constructive.

4 Weak trajectory and which path information

For a one particle system, the most tangible source of physical quantity is
arguably the trajectory of the particle, so let us examine how the weak value
of the position x varies with time. This is done by setting formally the pre-
selected state by the retarded state |φ(t)⟩ = U(t)|φ⟩ and the post-selected
state by the advanced state |ψ(t)⟩ = U(t− T )|ψ⟩ for 0 ≤ t ≤ T . The resultant
weak value,

xw(t) :=
⟨ψ(t)|x|φ(t)⟩
⟨ψ(t)|φ(t)⟩ =

⟨φ|U(T − t)xU(t)|ψ⟩
⟨φ|U(T )|ψ⟩ (12)

is in general complex-valued, but it can be readily seen that, if both |φ⟩ and
|ψ⟩ are position eigenstates, xw(t) becomes real and agrees with the classical
trajectory.

Now, if we instead have the superposition state for |φ⟩ given in (6), we find

xw(t) =
xf t

T
+ i

xi(t− T ) tan
(
m
!

xfxi

T

)

T
. (13)

We then notice that the real part Rexw(t) corresponds to the average of the
two classical trajectories coming from the two slits S± (see FIG. 2). Although
this is consistent with the real part of the momentum Re pw in (9), being
the average (Rexw(0) = 0 in particular), it cannot reasonably be regarded
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Fig. 3 The weak value xw(t) as a function of the post-selection xf for a fixed t for 0 ≤ t <

T . The thick line represents Rexw while the thin line represents Imxw. The imaginary part

Imxw diverges at the locations where the transition probability, indicated by the orange

filled line, vanishes.

the imaginary part Imxw(t), we notice that it oscillates quite wildly in such a way that it

vanishes when the interference at the screen becomes constructive while it diverges when it is

destructive (see Fig.3), as can be easily seen by comparing it with the transition probability

(10). As such, the imaginary part may be regarded act an indicator of interference effect,

which can be shown to be valid in a more general context [11].

The validity of our observation on the weak trajectories made for the simple two cases

must further be examined by cases where more general selections are considered. We now

do this for the triple slit case, before going to the multiple slit case later.

4. The Triple Slit Experiment

As a next step toward generalization, we discuss the triple slit experiment where the slits

are distanced equally from each other. This is realized by choosing the pre-selected state as

|ψ⟩ = 1√
3
(|xi⟩+ |0⟩+ |− xi⟩) (13)

while keeping the post-selected state |xf ⟩ as before. Assuming again the free Hamiltonian,

we find the transition probability,

|⟨xf |U(T )|φ⟩|2 = m

6π!T

{
3 + 2 cos

(
m

!
2xfxi
T

)

+ 4 cos
(m
!
xfxi
T

)
cos

(
m

!
x2i
2T

)}
. (14)

Note that the transition probability oscillates as a function of xf on the screen, but unlike
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Fig. 3 The weak value xw(t) as a function of the post-selection xf for a fixed t for 0 ≤ t <

T . The thick line represents Rexw while the thin line represents Imxw. The imaginary part

Imxw diverges at the locations where the transition probability, indicated by the orange

filled line, vanishes.
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for the real and imaginary parts, respectively.

Since the denominator of the function g is proportional to the transition probability (14),

and since g has both the real and imaginary parts, the weak value xw(t) moves away from

the origin in the complex plane when the interference becomes destructive. This implies that

the imaginary part of the weak value Imxw continues to possess the basic property as an

indicator of the interference, although it does not exhibit a simple behavior as it does in the

previous case (see Fig.4) including the nondivergence at the destructive points on account

of the nonvanishing transition probability (14).

We also notice that, unlike the previous double slit case, the real part of the weak value

Rexw shows a synchronous behavior with the imaginary part as they share the same denom-

inator. As a result, it does not allow the simple intuitive picture of the average xf

T t of the

three classical trajectories starting from x = xi, 0 and −xi. However, a notable feature still

remains, that is, as a complex function it is linear in time, and hence the trajectory is a

straight line connecting xw(0) = g(xi, xf ) and xw(T ) = xf . In fact, it can be seen that the

weak trajectory xw(t) yields an average path under an extended notion of probability for

the processes, which we shall discuss in the following sections.

5. The Multiple Slit Experiment and the Reality Condition

Now we consider the general case where there are N slits at x = x1, x2, . . . , xN . Here we

have the corresponding pre-selected state,

|φ⟩ =
N∑

n=1

cn|xn⟩, cn ∈ C, (17)
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Fig. 1 Our simplified double slit (gedanken) experiment. The orange filled curve describes
the transition probability when the slits are point-like, whereas the dotted curve describes
the transition probability for the case where the slits are finite in size and the particle
distribution is given by a Gaussian distribution around S±.

3 Double slit experiment

We now illustrate our argument by the double slit experiment. Consider a
(massive) particle passing through two narrow slits S± and later hits the screen
to form an interference pattern (see FIG.1). To make our analysis simpler, we
choose our state at t = 0 by the superposition of two localized states,

|ψ⟩ = 1√
2
(|xi⟩+ |− xi⟩) . (6)

Our post-selection at time t = T is then made by the position eigenstate at
x = xf ,

|φ⟩ = |xf ⟩, (7)

corresponding to the point where the particle is spotted.
Ignoring the dynamics in the y-direction which plays no essential role in

the following discussion, we just take account of the dynamics of free motion
in the x-direction described by the Hamiltonian, H = p2/2m, where m is the
mass of the particle and p the momentum along x. The time evolution is then
given by the unitary transformation U(t) = exp (−iHt/!), and for the present
process the transition probability reads

|⟨ψ|U(T )|φ⟩|2 =
m

π!T cos2
(m
!
xfxi

T

)
. (8)

This picture of interference yields undiminished fringes and is admittedly too
simplistic, and perhaps one can render it more realistic by considering a Gaus-
sian distribution for the initial state (see FIG.1). However, it will be seen that
our picture is sufficient to capture the key feature of the weak value on the
wave-particle duality.

To put the present case in the general context, we introduce |φ(T )⟩ :=
U(T )|φ⟩ and consider the family of post-selected states V †

p (α)|xf ⟩ with Vp(α) =

Weak Value and the Wave-Particle Duality 5

exp [−iαp]. Since p is the generator of translation, we have V †
p (α)|xf ⟩ =

|xf − α⟩. The probability amplitude is then K(α) = ⟨ψ|Vp(α)|φ(T )⟩, and the
transition probability (8) is just |K(0)|2. Now, the relevant completeness re-

lation of the intermediate states is I =
∫∞
0 dx|x⟩⟨x|+

∫ 0
−∞ dx|x⟩⟨x|, according

to which the transition amplitude splits as K(α) = K+(α) + K−(α), where
K±(α) = ⟨ψ|Vp(α)|φ±(T )⟩/

√
2 with |φ±(T )⟩ = U(T )| ± xi⟩.

Under our choice of selections, on the screen at t = T the weak value of
the momentum pw and those for the partial processes (p±)w are given by

pw =
⟨ψ| p |φ(T )⟩
⟨ψ|φ(T )⟩ = m

xf + ixi tan
(
m
!

xfxi

T

)

T
, (9)

(p±)w =
⟨ψ| p |φ±(T )⟩
⟨ψ|φ±(T )⟩

= m
xf ∓ xi

T
. (10)

Since (p±)w are both real, the index (5) turns out to be

I = Im pw = m
xi tan

(
m
!

xfxi

T

)

T
. (11)

We thus see that the index I is just the imaginary part Im pw, which diverges
when the interference becomes completely destructive K(0) → 0 and vanishes
when it is maximally constructive.

4 Weak trajectory and which path information

For a one particle system, the most tangible source of physical quantity is
arguably the trajectory of the particle, so let us examine how the weak value
of the position x varies with time. This is done by setting formally the pre-
selected state by the retarded state |φ(t)⟩ = U(t)|φ⟩ and the post-selected
state by the advanced state |ψ(t)⟩ = U(t− T )|ψ⟩ for 0 ≤ t ≤ T . The resultant
weak value,

xw(t) :=
⟨ψ(t)|x|φ(t)⟩
⟨ψ(t)|φ(t)⟩ =

⟨φ|U(T − t)xU(t)|ψ⟩
⟨φ|U(T )|ψ⟩ (12)

is in general complex-valued, but it can be readily seen that, if both |φ⟩ and
|ψ⟩ are position eigenstates, xw(t) becomes real and agrees with the classical
trajectory.

Now, if we instead have the superposition state for |φ⟩ given in (6), we find

xw(t) =
xf t

T
+ i

xi(t− T ) tan
(
m
!

xfxi

T

)

T
. (13)

We then notice that the real part Rexw(t) corresponds to the average of the
two classical trajectories coming from the two slits S± (see FIG. 2). Although
this is consistent with the real part of the momentum Re pw in (9), being
the average (Rexw(0) = 0 in particular), it cannot reasonably be regarded
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Fig. 3 The weak value xw(t) as a function of the post-selection xf for a fixed t for 0 ≤ t <

T . The thick line represents Rexw while the thin line represents Imxw. The imaginary part

Imxw diverges at the locations where the transition probability, indicated by the orange

filled line, vanishes.

the imaginary part Imxw(t), we notice that it oscillates quite wildly in such a way that it

vanishes when the interference at the screen becomes constructive while it diverges when it is

destructive (see Fig.3), as can be easily seen by comparing it with the transition probability

(10). As such, the imaginary part may be regarded act an indicator of interference effect,

which can be shown to be valid in a more general context [11].

The validity of our observation on the weak trajectories made for the simple two cases

must further be examined by cases where more general selections are considered. We now

do this for the triple slit case, before going to the multiple slit case later.

4. The Triple Slit Experiment

As a next step toward generalization, we discuss the triple slit experiment where the slits

are distanced equally from each other. This is realized by choosing the pre-selected state as

|ψ⟩ = 1√
3
(|xi⟩+ |0⟩+ |− xi⟩) (13)

while keeping the post-selected state |xf ⟩ as before. Assuming again the free Hamiltonian,

we find the transition probability,

|⟨xf |U(T )|φ⟩|2 = m
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Note that the transition probability oscillates as a function of xf on the screen, but unlike

the previous double slit case it does not necessarily vanish even at the most destructive

interference points (see Fig.4).

Now, the weak trajectory xw(t) can be obtained in an analogous manner as in the double

slit case, and the result is

xw(t) =
⟨xf |U(T − t)xU(t)|φ⟩

⟨xf |U(T )|φ⟩

= xf
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the imaginary part Imxw(t), we notice that it oscillates quite wildly in such a way that it

vanishes when the interference at the screen becomes constructive while it diverges when it is

destructive (see Fig.3), as can be easily seen by comparing it with the transition probability

(10). As such, the imaginary part may be regarded act an indicator of interference effect,

which can be shown to be valid in a more general context [11].

The validity of our observation on the weak trajectories made for the simple two cases

must further be examined by cases where more general selections are considered. We now

do this for the triple slit case, before going to the multiple slit case later.

4. The Triple Slit Experiment

As a next step toward generalization, we discuss the triple slit experiment where the slits

are distanced equally from each other. This is realized by choosing the pre-selected state as

|ψ⟩ = 1√
3
(|xi⟩+ |0⟩+ |− xi⟩) (13)

while keeping the post-selected state |xf ⟩ as before. Assuming again the free Hamiltonian,

we find the transition probability,

|⟨xf |U(T )|φ⟩|2 = m

6π!T

{
3 + 2 cos

(
m

!
2xfxi
T

)

+ 4 cos
(m
!
xfxi
T

)
cos

(
m

!
x2i
2T

)}
. (14)

Note that the transition probability oscillates as a function of xf on the screen, but unlike

the previous double slit case it does not necessarily vanish even at the most destructive

interference points (see Fig.4).

Now, the weak trajectory xw(t) can be obtained in an analogous manner as in the double

slit case, and the result is

xw(t) =
⟨xf |U(T − t)xU(t)|φ⟩

⟨xf |U(T )|φ⟩

= xf
t

T
+ g(xi, xf )

(
1− t

T

)
, (15)

7

=

xf +

Transition
Probability

Imxw

Rexw

Fig. 4 The weak value xw(t) as a function of the post-selection xf for a fixed t for

0 ≤ t < T . Both Rexw and Imxw show distinctively different behaviors from the double slit
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where g = g(xi, xf ) is a complex coefficient function given by
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for the real and imaginary parts, respectively.

Since the denominator of the function g is proportional to the transition probability (14),

and since g has both the real and imaginary parts, the weak value xw(t) moves away from

the origin in the complex plane when the interference becomes destructive. This implies that

the imaginary part of the weak value Imxw continues to possess the basic property as an

indicator of the interference, although it does not exhibit a simple behavior as it does in the

previous case (see Fig.4) including the nondivergence at the destructive points on account

of the nonvanishing transition probability (14).

We also notice that, unlike the previous double slit case, the real part of the weak value

Rexw shows a synchronous behavior with the imaginary part as they share the same denom-

inator. As a result, it does not allow the simple intuitive picture of the average xf

T t of the

three classical trajectories starting from x = xi, 0 and −xi. However, a notable feature still

remains, that is, as a complex function it is linear in time, and hence the trajectory is a

straight line connecting xw(0) = g(xi, xf ) and xw(T ) = xf . In fact, it can be seen that the

weak trajectory xw(t) yields an average path under an extended notion of probability for

the processes, which we shall discuss in the following sections.

5. The Multiple Slit Experiment and the Reality Condition

Now we consider the general case where there are N slits at x = x1, x2, . . . , xN . Here we

have the corresponding pre-selected state,

|φ⟩ =
N∑

n=1

cn|xn⟩, cn ∈ C, (17)
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Fig. 1 Our simplified double slit (gedanken) experiment. The orange filled curve describes
the transition probability when the slits are point-like, whereas the dotted curve describes
the transition probability for the case where the slits are finite in size and the particle
distribution is given by a Gaussian distribution around S±.

3 Double slit experiment

We now illustrate our argument by the double slit experiment. Consider a
(massive) particle passing through two narrow slits S± and later hits the screen
to form an interference pattern (see FIG.1). To make our analysis simpler, we
choose our state at t = 0 by the superposition of two localized states,

|ψ⟩ = 1√
2
(|xi⟩+ |− xi⟩) . (6)

Our post-selection at time t = T is then made by the position eigenstate at
x = xf ,

|φ⟩ = |xf ⟩, (7)

corresponding to the point where the particle is spotted.
Ignoring the dynamics in the y-direction which plays no essential role in

the following discussion, we just take account of the dynamics of free motion
in the x-direction described by the Hamiltonian, H = p2/2m, where m is the
mass of the particle and p the momentum along x. The time evolution is then
given by the unitary transformation U(t) = exp (−iHt/!), and for the present
process the transition probability reads

|⟨ψ|U(T )|φ⟩|2 =
m

π!T cos2
(m
!
xfxi

T

)
. (8)

This picture of interference yields undiminished fringes and is admittedly too
simplistic, and perhaps one can render it more realistic by considering a Gaus-
sian distribution for the initial state (see FIG.1). However, it will be seen that
our picture is sufficient to capture the key feature of the weak value on the
wave-particle duality.

To put the present case in the general context, we introduce |φ(T )⟩ :=
U(T )|φ⟩ and consider the family of post-selected states V †

p (α)|xf ⟩ with Vp(α) =

=

xf +

Transition
Probability

Imxw

Rexw

Fig. 4 The weak value xw(t) as a function of the post-selection xf for a fixed t for

0 ≤ t < T . Both Rexw and Imxw show distinctively different behaviors from the double slit

case, yielding finite peaks at the locations where the transition probability becomes minimal.

where g = g(xi, xf ) is a complex coefficient function given by

Re g =
2xi sin

(m
!

xfxi

T

)
sin

(
m
!

x2
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2T

)

3 + 2 cos
(
m
!

2xfxi

T

)
+ 4 cos

(m
!

xfxi

T

)
cos

(
m
!

x2
i

2T

) ,

Im g = −
2xi

{
cos

(m
!

xfxi

T

)
+ cos

(
m
!

x2
i

2T

)}
sin

(m
!

xfxi

T

)

3 + 2 cos
(
m
!

2xfxi

T

)
+ 4 cos

(m
!

xfxi

T

)
cos

(
m
!

x2
i

2T

) ,

(16)

for the real and imaginary parts, respectively.

Since the denominator of the function g is proportional to the transition probability (14),

and since g has both the real and imaginary parts, the weak value xw(t) moves away from

the origin in the complex plane when the interference becomes destructive. This implies that

the imaginary part of the weak value Imxw continues to possess the basic property as an

indicator of the interference, although it does not exhibit a simple behavior as it does in the

previous case (see Fig.4) including the nondivergence at the destructive points on account

of the nonvanishing transition probability (14).

We also notice that, unlike the previous double slit case, the real part of the weak value

Rexw shows a synchronous behavior with the imaginary part as they share the same denom-

inator. As a result, it does not allow the simple intuitive picture of the average xf

T t of the

three classical trajectories starting from x = xi, 0 and −xi. However, a notable feature still

remains, that is, as a complex function it is linear in time, and hence the trajectory is a

straight line connecting xw(0) = g(xi, xf ) and xw(T ) = xf . In fact, it can be seen that the

weak trajectory xw(t) yields an average path under an extended notion of probability for

the processes, which we shall discuss in the following sections.

5. The Multiple Slit Experiment and the Reality Condition

Now we consider the general case where there are N slits at x = x1, x2, . . . , xN . Here we

have the corresponding pre-selected state,

|φ⟩ =
N∑

n=1

cn|xn⟩, cn ∈ C, (17)

8

λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩

⟨φ|U(tf )U †(ti)|ψ⟩
+(1−α) ⟨ψ|U(ti)A(t)U†(tf )|φ⟩

⟨φ|U(ti)U †(tf )|ψ⟩

U(t, t′) = U(t−t′) = U(t)U †(t′) A(t) := U †(t)AU(t) |φk⟩ |ψ⟩

U(t, ti)|ψ⟩ U(t, tf )|φ⟩ ⟨φ|U †(t, tf )

|ψ⟩ = 1√
3
(|1⟩+ |2⟩+ |3⟩)

|φ⟩ = 1√
3
(|1⟩+ |2⟩ − |3⟩)

Pi = |i⟩⟨i| i = 1, 2, 3 Pi = |ci⟩⟨ci|

(Pi)w =
⟨b|Pi|a⟩
⟨b|a⟩

A|ψ⟩ = a|ψ⟩ A|φ⟩ = a|φ⟩

⟨A⟩ := ⟨ψ|A|ψ⟩

xw(t) = xi +
(xf − xi)t

T
= xcl(t) xw(t) = xcl(t)

gÂσ1 ΨMD(0, 0) e−igAwσ1ΨMD(0, 0)

ΨMD = ΨMD(θ,φ) = cos θ |0⟩+ eiφ sin θ |1⟩

Aw := A = B + C Aw = Bw + Cw Aw = BwCw

2

weak trajectory

and the post-selected state as |xf ⟩. The weak trajectory can then be written as

xw(t) =
⟨xf |U(T − t)xU(t)|φ⟩

⟨xf |U(T )|φ⟩

=
N∑

n=1

ωnx
n
w(t), (18)

where we have introduced the weight factor,

ωn =
cn⟨xf |U(T )|xn⟩∑
n cn⟨xf |U(T )|xn⟩

. (19)

In (18), the function xnw(t) is just the weak trajectory with the pre-selected state |xn⟩, i.e.,

xnw(t) =
⟨xf |U(T − t)xU(t)|xn⟩

⟨xf |U(T )|xn⟩
, (20)

which, as we have seen in (7), is equal to the classical trajectory,

xnw(t) = xncl(t) =
(xf − xn)t+ xnT

T
. (21)

Plugging this expression into (18), we obtain

xw(t) = xf
t

T
+

(
1− t

T

) N∑

n=1

ωnxn. (22)

At this point, we note that the weight factor ωn is in general complex but satisfies
∑

n ωn = 1.

Thus, the expression (18) alludes us to interpret that the weak trajectory xw(t) represents

an average of N classical trajectories going from xn over to xf with the ‘complex probability’

ωn. In fact, this simple interpretation is seen to be valid for more general cases, and can be

regarded as a basic and universal property of the weak trajectory.

Now, let us consider the special situation in which the trajectory xw(t) becomes entirely

real, Im[xw(t)] = 0. This occurs if

Im
N∑

n=1

ωnxn = 0, (23)

which imposes a condition on the combination of the transition amplitudes and the form of

the pre-selected state. Since varying the final point xf alters each of the transition amplitudes

associated with the slits at x1, x2 . . . , xN , it is clear that there are infinitely many isolated

points xf for which the above condition (23) is satisfied ensuring real trajectories to appear

there.

In fact, the condition (23) can be made simpler in terms of transition functions as

d

dxf
|⟨xf |U(T )|φ⟩|2 = 0. (24)
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R C RI CI |φk⟩ |ψ⟩
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k
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K(α) = ⟨φ|uA(α)|ψ⟩

Kk(α) = ⟨φ|uA(α)|χk⟩⟨χk|ψ⟩

|χ1⟩ |χ2⟩ |χ3⟩ p

cn → ⟨xn|ψ⟩ U(T ) → 1
⟨φn|xn⟩⟨xn|ψ⟩

⟨φ|ψ⟩

I :=
1

2
lim
α→0

1

|K(α)|2
∂

∂α

(
|K(α)|2 −

∑

k

|Kk(α)|2
)
.

Ak
w =

⟨φ|A|χk⟩
⟨φ|χk⟩

‘weak quasiprobability’
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exp [−iαp]. Since p is the generator of translation, we have V †
p (α)|xf ⟩ =

|xf − α⟩. The probability amplitude is then K(α) = ⟨ψ|Vp(α)|φ(T )⟩, and the
transition probability (8) is just |K(0)|2. Now, the relevant completeness re-

lation of the intermediate states is I =
∫∞
0 dx|x⟩⟨x|+

∫ 0
−∞ dx|x⟩⟨x|, according

to which the transition amplitude splits as K(α) = K+(α) + K−(α), where
K±(α) = ⟨ψ|Vp(α)|φ±(T )⟩/

√
2 with |φ±(T )⟩ = U(T )| ± xi⟩.

Under our choice of selections, on the screen at t = T the weak value of
the momentum pw and those for the partial processes (p±)w are given by

pw =
⟨ψ| p |φ(T )⟩
⟨ψ|φ(T )⟩ = m

xf + ixi tan
(
m
!

xfxi

T

)

T
, (9)

(p±)w =
⟨ψ| p |φ±(T )⟩
⟨ψ|φ±(T )⟩

= m
xf ∓ xi

T
. (10)

Since (p±)w are both real, the index (5) turns out to be

I = Im pw = m
xi tan

(
m
!

xfxi

T

)

T
. (11)

We thus see that the index I is just the imaginary part Im pw, which diverges
when the interference becomes completely destructive K(0) → 0 and vanishes
when it is maximally constructive.

4 Weak trajectory and which path information

For a one particle system, the most tangible source of physical quantity is
arguably the trajectory of the particle, so let us examine how the weak value
of the position x varies with time. This is done by setting formally the pre-
selected state by the retarded state |φ(t)⟩ = U(t)|φ⟩ and the post-selected
state by the advanced state |ψ(t)⟩ = U(t− T )|ψ⟩ for 0 ≤ t ≤ T . The resultant
weak value,

xw(t) :=
⟨ψ(t)|x|φ(t)⟩
⟨ψ(t)|φ(t)⟩ =

⟨φ|U(T − t)xU(t)|ψ⟩
⟨φ|U(T )|ψ⟩ (12)

is in general complex-valued, but it can be readily seen that, if both |φ⟩ and
|ψ⟩ are position eigenstates, xw(t) becomes real and agrees with the classical
trajectory.

Now, if we instead have the superposition state for |φ⟩ given in (6), we find

xw(t) =
xf t

T
+ i

xi(t− T ) tan
(
m
!

xfxi

T

)

T
. (13)

We then notice that the real part Rexw(t) corresponds to the average of the
two classical trajectories coming from the two slits S± (see FIG. 2). Although
this is consistent with the real part of the momentum Re pw in (9), being
the average (Rexw(0) = 0 in particular), it cannot reasonably be regarded
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ωn x
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gÂσ1 ΨMD(0, 0) e−igAwσ1ΨMD(0, 0)

ΨMD = ΨMD(θ,φ) = cos θ |0⟩+ eiφ sin θ |1⟩

Aw := A = B + C Aw = Bw + Cw Aw = BwCw

Aw := A = BC Aw = Bw Cw ai ∈ R

(P1)w = (P2)w = 1 (P3)w = −1

O(a) = a1σ1 + a2σ2 + a3σ3

⟨O(a)⟩ = Ψ†
MDO(a)ΨMD = 2g (a1 ImAw − a2 ReAw) + a3

Aw := A = a Aw = a = ReAw − 2a ImAw

|ψ⟩ |ψ⟩⟨ψ|

Γk Γs ̸=

O3 Ok Os

O = A(O1 ⊗O2 ⊗O3 ⊗ · · ·⊗Os)A

dim(H) ̸= 2

(Γ, V ′)

C(a, b) =

∫
dλ ρ(λ)A(a,λ)B(b,λ)
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what we have learned so far:

it is given by the average over respective ‘classical’ weak 
trajectories weighted with ‘weak quasiprobability'

imaginary part describes the degree of interference (more next)

further example:  Lloyd’s mirror

ment. The particle is localized around (xi, y

=

xf +
S+

x

y

0

Figure 4.7: Lloyd’s mirror experiment. The particle is localized around S+ at time t = 0
and arrived at xf at time t = T . In classical optics, the light can take the path toward the
screen via the wall (mirror) and straight forwardly toward the screen. This particle cause
interference on the screen, and the orange filled curve represents the interference fringes (the
transition probability) especially when one choose the position eigenstate as the pre-selected
state. If one prepares the Gaussian state instead of the position eigenstate, the transition
probability becomes more realistic and is drawn in the dashed curve.

[42]. We assume that the particle moves under the free Hamiltonian in the y-direction,
and reaches at the screen as Fig. 4.7. In general, we must consider two-dimensional system.
However, as long as we focus on the weak value along the x-direction, we can ignore the
contribution from the y-direction because of its definition. Hence, our main concern is one-
dimensional system with the perfectly reflecting wall potential.

We obtain the Feynman kernel K(x, t; x0, t0) = ⟨x|U(t, t0)|x0⟩ by substituting a set of
eigenstates of the Hamiltonian {|χk⟩},

K(x, t; x0, t0) = ⟨x|U(t, t0)|x0⟩

=

∫
dk ⟨x|U(t, t0)|χk⟩⟨χk|x0⟩

=

∫
dk ⟨x|e−iH(t−t0)/!|χk⟩⟨χk|x0⟩

=

∫
dk χk(x)χ∗

k(x0)e
−iEk(t−t0)/!, (4.96)

where Ek is the eigenvalue of the Hamiltonian for the eigenstate |χk⟩. From the Dirich-
let boundary condition, it is well known that the solution for the Schrödinger equation is
superposition of the plane wave,

χk(x) = ⟨x|χk⟩ =
1√
2L

(
eikx − e−ikx

)
, (4.97)
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Figure 4.8: The weak value for position xw(t) in the complex plane for a number of different
post-selections with the density proportional to the transition probability |⟨xf |U(T )|xi⟩|2.
The real and imaginary parts are described in orange and green lines and projected on the
bottom and the left-back planes, respectively.

In chapter 3, we have treated the interference. Let us briefly mention the interference. In
classical optics, the interference results in the interference between the light reflected on the
wall and straightly toward the screen. However, in this case, a infinite number of the paths
are interfered each other, and the interference pattern is appeared on the screen.

4.9 Summary

In this chapter, we have shown the behavior of the weak value xw(t) in several models in-
cluding multiple-slit (thought) experiment and Lloyd’s mirror experiment. In the double-slit
experiment, we have found that the real and imaginary parts of the weak values can be re-
garded as the average of the classical trajectory and the interference effect, respectively. The
real part of the position weak value Re xw(t), however, cannot be interpreted as the average
of the classical trajectory if we consider multiple (more than two) slit experiment. We found
that the averaged nature of the weak value is rediscovered when one admits the complex
probability. Then, quantum eraser is utilized to obtain which-path information. At the slit
one can distinguish the particle, but, which path the particle takes is completely erased by
the post-selection at the screen, and the interference fringes can be observed [7]. Although
the which-path information seems to be completely lost in quantum eraser, by employing the
spin-tagged position weak value, we can find which path the particle takes for an ensemble
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Chapter 2

Review of time symmetric
formalism

2.1 Time symmetric formalism

　The one of the time symmetric formalisms of quantum mechanics was brought
by Y. Aharonov [8]. First, this time symmetric formalism is evoked though the
idea that what is predicted by quantum mechanics is not results of measurements
but only probability distributions which are expressed time symmetrically (con-
stant under changing symmetrically both initial and final states). Let |ψ⟩ and
|φ⟩ be initial and final state in the system. The probability amplitude of the
process from the initial state to the final state under some interactions is written
as,

⟨φ|U(tf − ti)|ψ⟩ (2.1)

where ti and tf represent the time of initial and final of the system. Generally,
we interpret this process as the unitary evolution of the initial state and the
projection measurement to the final state. However this process is also inter-
preted as the projection measurement to the state U(ti − tf )|φ⟩. These two
interpretations imply that the probability of the quantum process is unchanged
under exchanging initial and final state. Quantum mechanics directly predicts
the probability of quantum processes, not the values of measurement results. We
have no reason to determine how measurements affect the system. The proba-
bility of quantum processes has time symmetric characteristics. If so, it must
be reachable to construct a time symmetrical formalism of quantum mechanics.

Recently, they reached to a time symmetric formulation of quantum
mechanics,“Two-state formalism of quantum mechanics” [9]. They formalized
the physical states by

℘̂(t) : = U(t− ti)|ψ⟩⟨φ|U †(t− tf ) (2.2)

where |ψ⟩ is initial state, |φ⟩ is final state of the quantum process. This state
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time symmetric formalism. We can get the probability by using the two-state
formalism which is described by the retarded state and the advanced state. We
must operate macroscopic subsystem only which interacts the measured system
in the measuring procedure.

The projective measurement lets us know which state the system is. After
the measurement, the system is fixed to the eigenstate of measured observable
with the eigenvalue which we get as the result. In quantum mechanics, the
projective measurement is explained by the interaction which makes correlation
between the system and the subsystem called ancilla. The interaction called von
Newmann interaction is written as Hint = Ap where A is a measured observable.
The initial state |ψ⟩ is written as

∑
i ci|ai⟩ with {|ai⟩} which are eigenstates for

eigenvalues {ai} of A. If we prepare the initial ancilla state as |q = 0⟩ localized
at q = 0, the state of all system becomes

∑
i ci|ai⟩|q = ai⟩ by the interaction.

The ancilla state which we can know is macroscopic state. When we know which
ancilla state is, the state collapse to the one of the eigenstates.

We now go back to the time symmetric formalism. For example, we con-
sider the projective measurement of the observable A which have {|wi⟩} as
eigenstates (Fig 2.1). For simplicity, the eigenvalues of {|wi⟩} are integers
i = · · · − 2,−1, 0, 1, 2, · · · . Let the initial state and the final state be

∑
i ci|wi⟩

and
∑

j c
′
j|wj⟩ by projective measurements. The initial state prepared at t = −T

and the final state is post-selected at t = +T . The interaction Hamiltonian Hint

is given as the von Newmann interaction.

Hint = δ(t)qA (2.8)

where q is the position of ancilla state. Since the observable A has discrete
integral eigenvalues, the canonical variable p takes discrete localized states which
are described as {|mi⟩} after the interaction. The state |mi⟩ means that it’s
momentum p is equal to i. For simplicity, The ancilla states prepared in |m0⟩.
We select the final ancilla state as |m1⟩. There is no Hamiltonian of the all
system without the interaction between ancilla and system at the measuring
point. Let the measurement be performed at t = 0. First, we see the evolution
of the retarded state of all system

∑
i ci|wi⟩|m0⟩. When the retarded state arrives

at the measurement point, the ancilla state makes a correlation with the system
state.

|ψ(t)⟩ =
{ ∑

i ci|wi⟩|m0⟩ (−T < t < 0)∑
i ci|wi⟩|mi⟩ (0 < t < +T )

(2.9)

The advanced state evolves similarly but backward in time. The ancilla state
becomes the correlated state with the system state at the measurement point.

|φ(t)⟩ =
{ ∑

j c
′
j|wj⟩|m1⟩ (0 < t < +T )∑

j c
′
j|wj⟩|m1−j⟩ (−T < t < 0)

(2.10)
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imaginary part relates to interference
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=
h |A|�i
h |�i . (1)

To derive the weak value of A, we put the unitary oper-
ator u

A

(↵) = exp [�i↵A] between a pre-selected state|�i
and a post-selected state| i. A is a generator of the
transformation. The transition amplitude of new pre-
selected state u

A

(↵)|�i to the post-selected state| i is

K(↵) := h |u
A

(↵)|�i. (2)

The di↵erential coe�cient of logarithm of the transition
amplitude K(↵) around ↵ = 0 is proportional to the
weak value,

A
w

= i lim
↵!0

1

K(↵)

@K(↵)

@↵
, (3)

We may regard ↵ as the parameter of the back reac-
tion on the system when the measurement of A has been
done[9, 10]. The pre-selected state |�i transformed into
u
A

(↵)|�i during the weak measurement. In the weak
measurement, the disturbance of the system caused by
the measurement is negligible. Therefore, the parameter
↵ is also infinitesimal. From here, because we will discuss
about the contribution from interference e↵ect, we inter-

pret u†
A

(↵)| i as the variation of the post-selected state
| i and observe the changing of the transition probabil-
ity.
To treat quantum interference, we decompose the tran-

sition amplitude K(↵) by using an orthonormal set of
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By using (7), (5) becomes
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The second term is cross terms expressing the interfer-
ence e↵ect. Arbitrary choice of orthonormal bases cause a
di↵erent type of interference. We will put two conditions:
(i) there are cross terms, and (ii) these terms depend on
the parameter ↵. For condition (ii), we will ignore any
case that produces no interference pattern even though
interference terms can be observed. For example, let us
consider the Young’s double slit experiment. The condi-
tion (ii) requires the transition probability is not equal
alongside the screen. To check the condition (ii), take
a derivative of the transition probability alongside the
screen. Because the post-selected state of this particle
could be eigenstate of the position, this di↵erential gen-
erates a momentum alongside the screen. From this, we
could derive the relation between quantum interference
and the weak value of momentum.
To examine the variation of terms in (9) with respct

to ↵, we will take the logarithmic derivative of (9) and
the limit of ↵! 0 .
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The variation of cross terms is equal to the di↵erence
between the imaginary part of A

w

and the sum of

Ak
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|Kk(0)|2
|K(0)|2 .
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Ak
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|Kk(0)|2
|K(0)|2 in (10) represents the con-

tribution from the each classical path and is subtracted
from the variation of total probability |K(0)|2. Note that,
because we can express the imaginary part of the weak
value in terms of the logarithmic derivative of the prob-
ability transition |K(0)|2, the destruction of an interfer-
ence pattern will make the imaginary part of the weak
value enormous. It shows the variation of interference
e↵ect expressed in terms of the imaginary part of weak
values.

III. THE DOUBLE SLIT EXPERIMENT

In this section, as a simple example of Sec II, we will
consider a weak value of a momentum in terms of the
Young’s double slit experiment as Bohr and Einstein de-
bated. We will show that the imaginary part of the weak
value for a momentum is proportional to the variation of
interference fringes.
The Young’s double slit experiment has a screen and a

sheet with two narrow slits at S±, and the screen and the
sheet are set in parallel to each other at a distance y

f

�y
i

like FIG.1. A particle is passing through these slits and
makes interference fringes on the screen. However, it is
di�cult to describe the e↵ect that the particle is passing
through these slits, so we will think of a superposition
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⟨φ2|A|ψ⟩
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⟨φn|A|ψ⟩
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Kk(α) = ⟨φ|uA(α)|χk⟩⟨χk|ψ⟩

|χ1⟩ |χ2⟩ |χ3⟩

λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩

⟨φ|U(tf )U †(ti)|ψ⟩
+(1−α) ⟨ψ|U(ti)A(t)U†(tf )|φ⟩

⟨φ|U(ti)U †(tf )|ψ⟩

U(t, t′) = U(t−t′) = U(t)U †(t′) A(t) := U †(t)AU(t) |φk⟩ |ψ⟩

U(t, ti)|ψ⟩ U(t, tf )|φ⟩ ⟨φ|U †(t, tf )
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∆Q = ExQ(Φ)− ExQ(Ψ) s|A|

ExQ(Ψ) := ⟨Ψ|Q|Ψ⟩/∥Ψ∥2

d∆Q

dg

∣∣∣∣
g=0

= ReAw + C(Ψ) · ImAw,

with a constant,

C(Ψ) := Ex{Q,P}(Ψ)− 2ExQ(Ψ) · ExP (Ψ),

defined by the initial state |ψ⟩ of the meter, where {Q,P} :=
QP + PQ is the anticommutator. We also have

d∆P

dg

∣∣∣∣
g=0

= 2VarP (ψ) · ImAw,

where
VarP (ψ) := ExP 2(ψ)− (ExP (ψ))

2

⟨A⟩ : H → R(A) ⊂ RI Aw : H⊗H → CI

∑

k

|⟨φk|ψ⟩|2
⟨φk|A|ψ⟩
⟨φk|ψ⟩

= ⟨ψ|A|ψ⟩

⟨φ1|A|ψ⟩
⟨φ1|ψ⟩

|b⟩

⟨φ2|A|ψ⟩
⟨φ2|ψ⟩

⟨φn|A|ψ⟩
⟨φn|ψ⟩

K(g) = ⟨φ|UA(g)|ψ⟩

I :=
1

2
lim
s→0

1

|K(s)|2
∂

∂s

(
|K(s)|2 −

∑

k

|Kk(s)|2
)
.

P (s) =
∑

k

Pk(s) +
∑

j ̸=k

Kk(s)K
∗
j (s) P1(s) P2(s) P3(s)

Kk(s) = ⟨φ|UA(s)|χk⟩⟨χk|ψ⟩

|χ1⟩ |χ2⟩ |χ3⟩ p

⟨φ(T )| = ⟨φ|U(T )

cn → ⟨xn|ψ⟩ ⟨φ(T )| = ⟨φ|U(T )
⟨φ(T )|xn⟩⟨xn|ψ⟩

⟨φ(T )|ψ⟩ =
⟨φ(T )|Ex

n|ψ⟩
⟨φ(T )|ψ⟩

3

⟨A⟩ : H → R(A) ⊂ RI Aw : H⊗H → CI

∑

k

|⟨φk|ψ⟩|2
⟨φk|A|ψ⟩
⟨φk|ψ⟩

= ⟨ψ|A|ψ⟩

⟨φ1|A|ψ⟩
⟨φ1|ψ⟩

|b⟩

⟨φ2|A|ψ⟩
⟨φ2|ψ⟩

⟨φn|A|ψ⟩
⟨φn|ψ⟩

K(g) = ⟨φ|UA(g)|ψ⟩

I :=
1

2
lim
s→0

1

|K(s)|2
∂

∂s

(
|K(s)|2 −

∑

k

|Kk(s)|2
)
.

P (s) =
∑

k

Pk(s) +
∑

j ̸=k

Kk(s)K
∗
j (s) P1(s) P2(s) P3(s)

Kk(s) = ⟨φ|UA(s)|χk⟩⟨χk|ψ⟩

|χ1⟩ |χ2⟩ |χ3⟩ p

⟨φ(T )| = ⟨φ|U(T )

cn → ⟨xn|ψ⟩ ⟨φ(T )| = ⟨φ|U(T )
⟨φ(T )|xn⟩⟨xn|ψ⟩

⟨φ(T )|ψ⟩ =
⟨φ(T )|Ex

n|ψ⟩
⟨φ(T )|ψ⟩

3

⟨A⟩ : H → R(A) ⊂ RI Aw : H⊗H → CI

∑

k

|⟨φk|ψ⟩|2
⟨φk|A|ψ⟩
⟨φk|ψ⟩

= ⟨ψ|A|ψ⟩

⟨φ1|A|ψ⟩
⟨φ1|ψ⟩

|b⟩

⟨φ2|A|ψ⟩
⟨φ2|ψ⟩

⟨φn|A|ψ⟩
⟨φn|ψ⟩

K(g) = ⟨φ|UA(g)|ψ⟩

I :=
1

2
lim
s→0

1

|K(s)|2
∂

∂s

(
|K(s)|2 −

∑

k

|Kk(s)|2
)
.

P (s) =
∑

k

Pk(s) +
∑

j ̸=k

Kk(s)K
∗
j (s) P1(s) P2(s) P3(s)

Kk(s) = ⟨φ|UA(s)|χk⟩⟨χk|ψ⟩

|χ1⟩ |χ2⟩ |χ3⟩ p

⟨φ(T )| = ⟨φ|U(T )

cn → ⟨xn|ψ⟩ ⟨φ(T )| = ⟨φ|U(T )
⟨φ(T )|xn⟩⟨xn|ψ⟩

⟨φ(T )|ψ⟩ =
⟨φ(T )|Ex

n|ψ⟩
⟨φ(T )|ψ⟩

3

⟨A⟩ : H → R(A) ⊂ RI Aw : H⊗H → CI

∑

k

|⟨φk|ψ⟩|2
⟨φk|A|ψ⟩
⟨φk|ψ⟩

= ⟨ψ|A|ψ⟩

⟨φ1|A|ψ⟩
⟨φ1|ψ⟩

|b⟩

⟨φ2|A|ψ⟩
⟨φ2|ψ⟩

⟨φn|A|ψ⟩
⟨φn|ψ⟩

K(g) = ⟨φ|UA(g)|ψ⟩

I :=
1

2
lim
s→0

1

|K(s)|2
∂

∂s

(
|K(s)|2 −

∑

k

|Kk(s)|2
)
.

P (s) =
∑

k

Pk(s) +
∑

j ̸=k

Kk(s)K
∗
j (s) P1(s) P2(s) P3(s)

Kk(s) = ⟨φ|UA(s)|χk⟩⟨χk|ψ⟩

|χ1⟩ |χ2⟩ |χ3⟩ p

⟨φ(T )| = ⟨φ|U(T )

cn → ⟨xn|ψ⟩ ⟨φ(T )| = ⟨φ|U(T )
⟨φ(T )|xn⟩⟨xn|ψ⟩

⟨φ(T )|ψ⟩ =
⟨φ(T )|Ex

n|ψ⟩
⟨φ(T )|ψ⟩

3

cn → ⟨xn|ψ⟩ ⟨φ(T )| = ⟨φ|U(T )
⟨φ(T )|xn⟩⟨xn|ψ⟩

⟨φ(T )|ψ⟩ =
⟨φ(T )|Ex

n|ψ⟩
⟨φ(T )|ψ⟩

Ak
w =

⟨φ|A|χk⟩
⟨φ|χk⟩

⟨A⟩dBB =

∫
dλA(λ)ρ(λ) ρ(λ) = |ψ(x)|2 λ x

⟨A⟩QM = ⟨ψ|A|ψ⟩

µ(E) = tr(WE) W A =
∑

i

aiE
A
i

µ

(
∑

i

Ei

)
=
∑

i

µ(Ei) {Ei}

Aw =
⟨φ|A|ψ⟩
⟨φ|ψ⟩

µ(E) = tr(WE) = α
⟨φ|E|ψ⟩
⟨φ|ψ⟩ + (1− α)

⟨ψ|E|φ⟩
⟨ψ|φ⟩

A(λ) =
⟨x|A|ψ⟩
⟨x|ψ⟩

λ(A) =
∑

i

aiµ(E
A
i ) = tr(WA) = α

⟨φ|A|ψ⟩
⟨φ|ψ⟩ + (1− α)

⟨ψ|A|φ⟩
⟨ψ|φ⟩

λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩

⟨φ|U(tf )U †(ti)|ψ⟩
+(1−α) ⟨ψ|U(ti)A(t)U†(tf )|φ⟩

⟨φ|U(ti)U †(tf )|ψ⟩

4

⟨A⟩ : H → R(A) ⊂ RI Aw : H⊗H → CI

∑

k

|⟨φk|ψ⟩|2
⟨φk|A|ψ⟩
⟨φk|ψ⟩

= ⟨ψ|A|ψ⟩

⟨φ1|A|ψ⟩
⟨φ1|ψ⟩

|b⟩

⟨φ2|A|ψ⟩
⟨φ2|ψ⟩

⟨φn|A|ψ⟩
⟨φn|ψ⟩

K(g) = ⟨φ|UA(g)|ψ⟩

I :=
1

2
lim
s→0

1

P (s)

∂

∂s

[
P (s)−

∑

k

Pk(s)

]

= Im

[
Aw −

∑

k

Pk(0)

P (0)
Ak

w

]

P (s) =
∑

k

Pk(s) +
∑

j ̸=k

Kk(s)K
∗
j (s) P1(s) P2(s) P3(s)

Kk(s) = ⟨φ|UA(s)|χk⟩⟨χk|ψ⟩

|χ1⟩ |χ2⟩ |χ3⟩ p

⟨φ(T )| = ⟨φ|U(T )

3

‘intensity’ of interference
‘off-diagonal’

|χ1⟩ |χ2⟩ |χ3⟩ p |χN ⟩

⟨φ(T )| = ⟨φ|U(T )

cn → ⟨xn|ψ⟩ ⟨φ(T )| = ⟨φ|U(T )
⟨φ(T )|xn⟩⟨xn|ψ⟩

⟨φ(T )|ψ⟩ =
⟨φ(T )|Ex

n|ψ⟩
⟨φ(T )|ψ⟩

Ak
w =

⟨φ|A|χk⟩
⟨φ|χk⟩

⟨A⟩dBB =

∫
dλA(λ)ρ(λ) ρ(λ) = |ψ(x)|2 λ x

⟨A⟩QM = ⟨ψ|A|ψ⟩

µ(E) = tr(WE) W A =
∑

i

aiE
A
i

µ

(
∑

i

Ei

)
=
∑

i

µ(Ei) {Ei}

Aw =
⟨φ|A|ψ⟩
⟨φ|ψ⟩

µ(E) = tr(WE) = α
⟨φ|E|ψ⟩
⟨φ|ψ⟩ + (1− α)

⟨ψ|E|φ⟩
⟨ψ|φ⟩

A(λ) =
⟨x|A|ψ⟩
⟨x|ψ⟩

λ(A) =
∑

i

aiµ(E
A
i ) = tr(WA) = α

⟨φ|A|ψ⟩
⟨φ|ψ⟩ + (1− α)

⟨ψ|A|φ⟩
⟨ψ|φ⟩

4

R C RI CI |φk⟩ |ψ⟩

|φ1⟩ |ψ⟩ |φ1⟩ |φ2⟩ |φ3⟩ α = 0, 1 α = 1/2

⟨A⟩ : H → R(A) ⊂ RI Aw : H⊗H → CI

∑

k

|⟨φk|ψ⟩|2
⟨φk|A|ψ⟩
⟨φk|ψ⟩

= ⟨ψ|A|ψ⟩

⟨φ1|A|ψ⟩
⟨φ1|ψ⟩

|b⟩

⟨φ2|A|ψ⟩
⟨φ2|ψ⟩

⟨φn|A|ψ⟩
⟨φn|ψ⟩

K(g) = ⟨φ|UA(g)|ψ⟩

I :=
1

2
lim
s→0

1

P (s)

∂

∂s

[
P (s)−

∑

k

Pk(s)

]

= Im

[
Aw −

∑

k

Pk(0)

P (0)
Ak

w

]

P (s) =
∑

k

Pk(s)+
∑

j ̸=k

Kk(s)K
∗
j (s) P1(s) P2(s) P3(s) PN

Kk(s) = ⟨φ|UA(s)|χk⟩⟨χk|ψ⟩

3



equivalent picture
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|b⟩
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⟨φn|A|ψ⟩
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K(g) = ⟨φ|UA(g)|ψ⟩
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1

2
lim
s→0

1

P (s)

∂

∂s
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P (s)−

∑

k

Pk(s)

]

= Im
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Aw −

∑

k

Pk(0)

P (0)
Ak

w

]

P (s) =
∑
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Pk(s)+
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j ̸=k

Kk(s)K
∗
j (s) P1(s) P2(s) P3(s) PN

Kk(s) = ⟨φ|UA(s)|χk⟩⟨χk|ψ⟩

3

=

K(s) := ⟨φ|UA(s)|ψ⟩

P (s) = |⟨φ|UA(s)|ψ⟩|2 UA(s) = e−isA P (s) = |K(s)|2

P (s)

P (0)
=

|⟨φ|(1− isA− (s2/2)A2 + · · ·)|ψ⟩|2

|⟨φ|ψ⟩|2

= 1 + 2sImAw + s2
{
|Aw|2 − Re(A2)w

}
+O(s3)

U(t)|ψ⟩ U†(T − t)|φ⟩ t Aw(t)

g|Aw| ≪ 1 |φ⟩ Ψ(Q) Φ(Q) Q

∆X = ExX(Φ)− ExX(Ψ) s|A|

ExX(Ψ) := ⟨Ψ|X|Ψ⟩/∥Ψ∥2 X = Q,P

d∆Q

dg

∣∣∣∣
g=0

= ReAw + C(Ψ) · ImAw,

∆Q = g [ReAw + C(Ψ) · ImAw] +O(g2)

∆P = 2gVarP (ψ) · ImAw +O(g2)

U †
A(s)|φ⟩

unitary family of postselections
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lim
s→0
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∂
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P (s)−
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P (0)
Ak

w

]
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∗
j (s) P1(s) P2(s) P3(s) PN

Kk(s) = ⟨φ|UA(s)|χk⟩⟨χk|ψ⟩

|χ1⟩ |χ2⟩ |χ3⟩ p |χN ⟩

⟨φ(T )| = ⟨φ|U(T )

cn → ⟨xn|ψ⟩ ⟨φ(T )| = ⟨φ|U(T )
⟨φ(T )|xn⟩⟨xn|ψ⟩

⟨φ(T )|ψ⟩ =
⟨φ(T )|Ex
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⟨φ(T )|ψ⟩

Ak
w =

⟨φ|A|χk⟩
⟨φ|χk⟩

⟨A⟩dBB =

∫
dλA(λ)ρ(λ) ρ(λ) = |ψ(x)|2 λ x

⟨A⟩QM = ⟨ψ|A|ψ⟩
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ex.) double slit experiment
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∂
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Kk(s)K
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Ak
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⟨φ|χk⟩
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unitary family of postselections

Weak Value and the Wave-Particle Duality 5

Under our choice of selections, on the screen at t = T the weak value of the
momentum pw and those for the partial processes (p±)w are given by

pw =
⟨ψ| p |φ(T )⟩
⟨ψ|φ(T )⟩ = m

xf + ixi tan
(
m
!

xfxi

T

)

T
, (10)

(p±)w =
⟨ψ| p |φ±(T )⟩
⟨ψ|φ±(T )⟩ = m

xf ∓ xi

T
. (11)

Since (p±)w are both real, the index (5) turns out to be

I = Im pw = m
xi tan

(
m
!

xfxi

T

)

T
. (12)

We thus see that the index I is just the imaginary part Im pw, which diverges when
the interference becomes completely destructive |K(T ; 0)|2 = |⟨ψ|U(T )|φ⟩|2 → 0,
and vanishes when it is maximally constructive.

4 Weak trajectory and which path information

For a one particle system, the most tangible source of physical quantity is arguably
the trajectory of the particle, so let us examine how the weak value of the position
x varies with time. This is done by setting formally the pre-selected state by the
retarded state |φ(t)⟩ = U(t)|φ⟩ and the post-selected state by the advanced state
|ψ(t)⟩ = U(t− T )|ψ⟩ for 0 ≤ t ≤ T . The resultant weak value,

xw(t) :=
⟨ψ(t)|x|φ(t)⟩
⟨ψ(t)|φ(t)⟩ =

⟨ψ|U(T − t)xU(t)|φ⟩
⟨ψ|U(T )|φ⟩ (13)

is in general complex-valued, but it can be readily seen that, if both |φ⟩ and |ψ⟩ are
position eigenstates, xw(t) becomes real and agrees with the classical trajectory.

Now, if we instead have the superposition state for |φ⟩ given in (6), we find

xw(t) =
xf t

T
+ i

xi(t− T ) tan
(
m
!

xfxi

T

)

T
. (14)

We then notice that the real part Rexw(t) corresponds to the average of the
two classical trajectories coming from the two slits S± (see FIG. 2). Although
this is consistent with the real part of the momentum Re pw in (10), being the
average (Rexw(0) = 0 in particular), it cannot reasonably be regarded as a true
trajectory. In fact, this is a common feature that arises when the pre-selected
state is formed by superposition, and is caused by the inability of distinction of
the individual superposed states by the post-selection. As we see shortly, this
pathological behavior can be ‘cured’ by rendering the distinction possible.

Before doing so, let us briefly discuss the imaginary part Im xw, which becomes
large as the transition probability becomes small and eventually diverges when the
interference is completely destructive (see FIG. 2). Note that although x is not
treated here as a generator for unitary transformations as p is, the connection to
interference is still valid, because of the direct dynamical relation between Im xw

and Im pw obtained analogously to the Ehrenfest theorem.

‘intensity’ of interference

I :=
1

2
lim
s→0

1

P (s)

∂

∂s

[
P (s)−

∑

k

Pk(s)

]

= Im

[
Aw −

∑

k

Pk(0)

P (0)
Ak

w

]

∝ Imxw

|φ(s)⟩ = eisp|φ⟩ = eisp|xf ⟩ = |xf − s⟩

P (s) =
∑

k

Pk(s)+
∑

j ̸=k

Kk(s)K
∗
j (s) P1(s) P2(s) P3(s) PN

Kk(s) = ⟨φ|UA(s)|χk⟩⟨χk|ψ⟩

|χ1⟩ |χ2⟩ |χ3⟩ p |χN ⟩

⟨φ(T )| = ⟨φ|U(T )

cn → ⟨xn|ψ⟩ ⟨φ(T )| = ⟨φ|U(T )
⟨φ(T )|xn⟩⟨xn|ψ⟩

⟨φ(T )|ψ⟩ =
⟨φ(T )|Ex

n|ψ⟩
⟨φ(T )|ψ⟩

Ak
w =

⟨φ|A|χk⟩
⟨φ|χk⟩

⟨A⟩dBB =

∫
dλA(λ)ρ(λ) ρ(λ) = |ψ(x)|2 λ x

4

=

xf +

Transition
Probability

ImxwRexw

Fig. 3 The weak value xw(t) as a function of the post-selection xf for a fixed t for 0 ≤ t <

T . The thick line represents Rexw while the thin line represents Imxw. The imaginary part

Imxw diverges at the locations where the transition probability, indicated by the orange

filled line, vanishes.

the imaginary part Imxw(t), we notice that it oscillates quite wildly in such a way that it

vanishes when the interference at the screen becomes constructive while it diverges when it is

destructive (see Fig.3), as can be easily seen by comparing it with the transition probability

(10). As such, the imaginary part may be regarded act an indicator of interference effect,

which can be shown to be valid in a more general context [11].

The validity of our observation on the weak trajectories made for the simple two cases

must further be examined by cases where more general selections are considered. We now

do this for the triple slit case, before going to the multiple slit case later.

4. The Triple Slit Experiment

As a next step toward generalization, we discuss the triple slit experiment where the slits

are distanced equally from each other. This is realized by choosing the pre-selected state as

|φ⟩ = 1√
3
(|xi⟩+ |0⟩+ |− xi⟩) (13)

while keeping the post-selected state |xf ⟩ as before. Assuming again the free Hamiltonian,

we find the transition probability,

|⟨xf |U(T )|φ⟩|2 = m

6π!T

{
3 + 2 cos

(
m

!
2xfxi
T

)

+ 4 cos
(m
!
xfxi
T

)
cos

(
m

!
x2i
2T

)}
. (14)

Note that the transition probability oscillates as a function of xf on the screen, but unlike

the previous double slit case it does not necessarily vanish even at the most destructive

interference points (see Fig.4).

Now, the weak trajectory xw(t) can be obtained in an analogous manner as in the double

slit case, and the result is

xw(t) =
⟨xf |U(T − t)xU(t)|φ⟩

⟨xf |U(T )|φ⟩

= xf
t

T
+ g(xi, xf )

(
1− t

T

)
, (15)

7

Ehrenfest theorem





expectation value  vs  weak value

expectation value

TEST SPACE
R C RI CI

⟨A⟩ : H → R(A) ⊂ RI Aw : H⊗H → CI

λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩

⟨φ|U(tf )U †(ti)|ψ⟩
+(1−α) ⟨ψ|U(ti)A(t)U†(tf )|φ⟩

⟨φ|U(ti)U †(tf )|ψ⟩

U(t, t′) = U(t− t′) = U(t)U †(t′) A(t) := U †(t)AU(t)

U(t, ti)|ψ⟩ U(t, tf )|φ⟩ ⟨φ|U †(t, tf )

|ψ⟩ = 1√
3
(|1⟩+ |2⟩+ |3⟩)

|φ⟩ = 1√
3
(|1⟩+ |2⟩ − |3⟩)

Pi = |i⟩⟨i| i = 1, 2, 3 Pi = |ci⟩⟨ci|

(Pi)w =
⟨b|Pi|a⟩
⟨b|a⟩

= ⟨ψ|A|ψ⟩

xw(t) = xi +
(xf − xi)t

T
= xcl(t) xw(t) = xcl(t)

gÂσ1 ΨMD(0, 0) e−igAwσ1ΨMD(0, 0)

within the (real) range of spectrum
weak value
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T
= xcl(t) xw(t) = xcl(t)

gÂσ1 ΨMD(0, 0) e−igAwσ1ΨMD(0, 0)

entire range of complex numbers

TEST SPACE

Aw :=

|ψ⟩ |ψ⟩⟨ψ|
Γk Γs ̸=
O3 Ok Os

O = A(O1 ⊗O2 ⊗O3 ⊗ · · ·⊗Os)A

V1 V2 V3

(Γ, V ′)

C(a, b) =

∫
dλ ρ(λ)A(a,λ)B(b,λ)

A(a,λ) = ±1 B(b,λ) = ±1

B0 ↔ B̄0 Υ(4s)

Γ(tl) = e−tl/τB Γ(tr) = e−tr/τB

|tl − tr|
PS >

√
2(
√
2− 1) ≈ 0.59.

∆θ ∆t
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λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩
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|φ⟩ = 1√
3
(|1⟩+ |2⟩ − |3⟩)

Pi = |i⟩⟨i| i = 1, 2, 3 Pi = |ci⟩⟨ci|

(Pi)w =
⟨b|Pi|a⟩
⟨b|a⟩

⟨A⟩ := ⟨ψ|A|ψ⟩

xw(t) = xi +
(xf − xi)t

T
= xcl(t) xw(t) = xcl(t)

gÂσ1 ΨMD(0, 0) e−igAwσ1ΨMD(0, 0)
Y. Aharonov, D. Z. Albert, L. Vaidman (1988)

 … the result of measurement of a spin component of 
spin 1/2 particle can turn out to be 100 …

2.  Physical value in HVT and quasiprobability

‘one-state’ value

‘two-state’ value



property of weak value

TEST SPACE
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Γ(tl) = e−tl/τB Γ(tr) = e−tr/τB
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fulfills sum rule

TEST SPACE

Aw := A = B + C Aw = Bw + Cw

Aw := A = a Aw = a

|ψ⟩ |ψ⟩⟨ψ|

Γk Γs ̸=

O3 Ok Os

O = A(O1 ⊗O2 ⊗O3 ⊗ · · ·⊗Os)A

V1 V2 V3

(Γ, V ′)

C(a, b) =

∫
dλ ρ(λ)A(a,λ)B(b,λ)

A(a,λ) = ±1 B(b,λ) = ±1

B0 ↔ B̄0 Υ(4s)

Γ(tl) = e−tl/τB Γ(tr) = e−tr/τB

TEST SPACE

Aw := A = B + C Aw = Bw + Cw

Aw := A = a Aw = a

|ψ⟩ |ψ⟩⟨ψ|

Γk Γs ̸=

O3 Ok Os

O = A(O1 ⊗O2 ⊗O3 ⊗ · · ·⊗Os)A

V1 V2 V3

(Γ, V ′)

C(a, b) =

∫
dλ ρ(λ)A(a,λ)B(b,λ)

A(a,λ) = ±1 B(b,λ) = ±1

B0 ↔ B̄0 Υ(4s)

Γ(tl) = e−tl/τB Γ(tr) = e−tr/τB

2)

or

(analogous to expectation value)

(Pi)w =
⟨b|Pi|a⟩
⟨b|a⟩

⟨A⟩ := ⟨ψ|A|ψ⟩

xw(t) = xi +
(xf − xi)t

T
= xcl(t) xw(t) = xcl(t)

gÂσ1 ΨMD(0, 0) e−igAwσ1ΨMD(0, 0)

ΨMD = ΨMD(θ,φ) = cos θ |0⟩+ eiφ sin θ |1⟩

Aw := A = B + C Aw = Bw + Cw

Aw := A = BC Aw = Bw Cw ai ∈ R

(P1)w = (P2)w = 1 (P3)w = −1

O(a) = a1σ1 + a2σ2 + a3σ3

⟨O(a)⟩ = Ψ†
MDO(a)ΨMD = 2g (a1 ImAw − a2 ReAw) + a3

Aw := A = a Aw = a = ReAw − 2a ImAw

|ψ⟩ |ψ⟩⟨ψ|

Γk Γs ̸=

O3 Ok Os

2

(Pi)w =
⟨b|Pi|a⟩
⟨b|a⟩

⟨A⟩ := ⟨ψ|A|ψ⟩

xw(t) = xi +
(xf − xi)t

T
= xcl(t) xw(t) = xcl(t)

gÂσ1 ΨMD(0, 0) e−igAwσ1ΨMD(0, 0)

ΨMD = ΨMD(θ,φ) = cos θ |0⟩+ eiφ sin θ |1⟩

Aw := A = B + C Aw = Bw + Cw Aw = BwCw

Aw := A = BC Aw = Bw Cw ai ∈ R

(P1)w = (P2)w = 1 (P3)w = −1

O(a) = a1σ1 + a2σ2 + a3σ3

⟨O(a)⟩ = Ψ†
MDO(a)ΨMD = 2g (a1 ImAw − a2 ReAw) + a3

Aw := A = a Aw = a = ReAw − 2a ImAw

|ψ⟩ |ψ⟩⟨ψ|

Γk Γs ̸=

O3 Ok Os

2

(Pi)w =
⟨b|Pi|a⟩
⟨b|a⟩

A|ψ⟩ = a|ψ⟩ A|φ⟩ = a|φ⟩

⟨A⟩ := ⟨ψ|A|ψ⟩

xw(t) = xi +
(xf − xi)t

T
= xcl(t) xw(t) = xcl(t)

gÂσ1 ΨMD(0, 0) e−igAwσ1ΨMD(0, 0)

ΨMD = ΨMD(θ,φ) = cos θ |0⟩+ eiφ sin θ |1⟩

Aw := A = B + C Aw = Bw + Cw Aw = BwCw

Aw := A = BC Aw = Bw Cw ai ∈ R

(P1)w = (P2)w = 1 (P3)w = −1

O(a) = a1σ1 + a2σ2 + a3σ3

⟨O(a)⟩ = Ψ†
MDO(a)ΨMD = 2g (a1 ImAw − a2 ReAw) + a3

Aw := A = a Aw = a = ReAw − 2a ImAw

|ψ⟩ |ψ⟩⟨ψ|

Γk Γs ̸=

2

(Pi)w =
⟨b|Pi|a⟩
⟨b|a⟩

A|ψ⟩ = a|ψ⟩ A|φ⟩ = a|φ⟩

⟨A⟩ := ⟨ψ|A|ψ⟩

xw(t) = xi +
(xf − xi)t

T
= xcl(t) xw(t) = xcl(t)

gÂσ1 ΨMD(0, 0) e−igAwσ1ΨMD(0, 0)

ΨMD = ΨMD(θ,φ) = cos θ |0⟩+ eiφ sin θ |1⟩

Aw := A = B + C Aw = Bw + Cw Aw = BwCw

Aw := A = BC Aw = Bw Cw ai ∈ R

(P1)w = (P2)w = 1 (P3)w = −1

O(a) = a1σ1 + a2σ2 + a3σ3

⟨O(a)⟩ = Ψ†
MDO(a)ΨMD = 2g (a1 ImAw − a2 ReAw) + a3

Aw := A = a Aw = a = ReAw − 2a ImAw

|ψ⟩ |ψ⟩⟨ψ|

Γk Γs ̸=

2



TEST SPACE
R C RI CI

⟨A⟩ : H → R(A) ⊂ RI Aw : H⊗H → CI

∑

k

|⟨φk|ψ⟩|2
⟨φk|A|ψ⟩
⟨φk|ψ⟩

= ⟨ψ|A|ψ⟩

λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩

⟨φ|U(tf )U †(ti)|ψ⟩
+(1−α) ⟨ψ|U(ti)A(t)U†(tf )|φ⟩

⟨φ|U(ti)U †(tf )|ψ⟩

U(t, t′) = U(t− t′) = U(t)U †(t′) A(t) := U †(t)AU(t)

U(t, ti)|ψ⟩ U(t, tf )|φ⟩ ⟨φ|U †(t, tf )

|ψ⟩ = 1√
3
(|1⟩+ |2⟩+ |3⟩)

|φ⟩ = 1√
3
(|1⟩+ |2⟩ − |3⟩)

Pi = |i⟩⟨i| i = 1, 2, 3 Pi = |ci⟩⟨ci|

(Pi)w =
⟨b|Pi|a⟩
⟨b|a⟩

⟨A⟩ := ⟨ψ|A|ψ⟩

xw(t) = xi +
(xf − xi)t

T
= xcl(t) xw(t) = xcl(t)

link between the weak value and the expectation value

average of weak values over postselections

average of the weak values assigned to all possible processes 
gives the expectation value

TEST SPACE

R C RI CI |φk⟩ |ψ⟩

|φ1⟩ |ψ⟩ |φ1⟩ |φ2⟩ |φ3⟩

⟨A⟩ : H → R(A) ⊂ RI Aw : H⊗H → CI

∑

k

|⟨φk|ψ⟩|2
⟨φk|A|ψ⟩
⟨φk|ψ⟩

= ⟨ψ|A|ψ⟩

⟨φ1|A|ψ⟩
⟨φ1|ψ⟩

⟨φ2|A|ψ⟩
⟨φ2|ψ⟩

⟨φn|A|ψ⟩
⟨φn|ψ⟩

λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩

⟨φ|U(tf )U †(ti)|ψ⟩
+(1−α) ⟨ψ|U(ti)A(t)U†(tf )|φ⟩

⟨φ|U(ti)U †(tf )|ψ⟩

U(t, t′) = U(t−t′) = U(t)U †(t′) A(t) := U †(t)AU(t) |φk⟩ |ψ⟩

U(t, ti)|ψ⟩ U(t, tf )|φ⟩ ⟨φ|U †(t, tf )

|ψ⟩ = 1√
3
(|1⟩+ |2⟩+ |3⟩)

|φ⟩ = 1√
3
(|1⟩+ |2⟩ − |3⟩)

Pi = |i⟩⟨i| i = 1, 2, 3 Pi = |ci⟩⟨ci|

TEST SPACE

R C RI CI |φk⟩ |ψ⟩

|φ1⟩ |ψ⟩ |φ1⟩ |φ2⟩ |φ3⟩

⟨A⟩ : H → R(A) ⊂ RI Aw : H⊗H → CI

∑

k

|⟨φk|ψ⟩|2
⟨φk|A|ψ⟩
⟨φk|ψ⟩

= ⟨ψ|A|ψ⟩

⟨φ1|A|ψ⟩
⟨φ1|ψ⟩

⟨φ2|A|ψ⟩
⟨φ2|ψ⟩

⟨φn|A|ψ⟩
⟨φn|ψ⟩

λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩

⟨φ|U(tf )U †(ti)|ψ⟩
+(1−α) ⟨ψ|U(ti)A(t)U†(tf )|φ⟩

⟨φ|U(ti)U †(tf )|ψ⟩

U(t, t′) = U(t−t′) = U(t)U †(t′) A(t) := U †(t)AU(t) |φk⟩ |ψ⟩

U(t, ti)|ψ⟩ U(t, tf )|φ⟩ ⟨φ|U †(t, tf )

|ψ⟩ = 1√
3
(|1⟩+ |2⟩+ |3⟩)

|φ⟩ = 1√
3
(|1⟩+ |2⟩ − |3⟩)

Pi = |i⟩⟨i| i = 1, 2, 3 Pi = |ci⟩⟨ci|

TEST SPACE

R C RI CI |φk⟩ |ψ⟩

|φ1⟩ |ψ⟩ |φ1⟩ |φ2⟩ |φ3⟩

⟨A⟩ : H → R(A) ⊂ RI Aw : H⊗H → CI

∑

k

|⟨φk|ψ⟩|2
⟨φk|A|ψ⟩
⟨φk|ψ⟩

= ⟨ψ|A|ψ⟩

⟨φ1|A|ψ⟩
⟨φ1|ψ⟩

⟨φ2|A|ψ⟩
⟨φ2|ψ⟩

⟨φn|A|ψ⟩
⟨φn|ψ⟩

λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩

⟨φ|U(tf )U †(ti)|ψ⟩
+(1−α) ⟨ψ|U(ti)A(t)U†(tf )|φ⟩

⟨φ|U(ti)U †(tf )|ψ⟩

U(t, t′) = U(t−t′) = U(t)U †(t′) A(t) := U †(t)AU(t) |φk⟩ |ψ⟩

U(t, ti)|ψ⟩ U(t, tf )|φ⟩ ⟨φ|U †(t, tf )

|ψ⟩ = 1√
3
(|1⟩+ |2⟩+ |3⟩)

|φ⟩ = 1√
3
(|1⟩+ |2⟩ − |3⟩)

Pi = |i⟩⟨i| i = 1, 2, 3 Pi = |ci⟩⟨ci|

C(Ψ) := Ex{Q,P}(Ψ)− 2ExQ(Ψ) · ExP (Ψ),

defined by the initial state |ψ⟩ of the meter, where {Q,P} :=
QP + PQ is the anticommutator. We also have

d∆P

dg

∣∣∣∣
g=0

= 2VarP (ψ) · ImAw,

where
VarP (ψ) := ExP 2(ψ)− (ExP (ψ))

2

Aw =
⟨φ|A|ψ⟩
⟨φ|ψ⟩

A1
w A2

w

}

Aw(t) =
⟨φ|U(T − t) ·A · U(t)|ψ⟩
⟨φ|U(T − t) · U(t)|ψ⟩ =

⟨φ|U(T − t)AU(t)|ψ⟩
⟨φ|U(T )|ψ⟩

A = σπ
4
:=

σz + σx√
2

|ψ⟩ = |xi⟩ |φ⟩ = |xf ⟩

(σπ
4
)w =

1 + 1√
2

= +
√
2 [−1,+1]

(σx)w =
⟨+x |σx|+z⟩
⟨+x |+z⟩ = +1

2

C(Ψ) := Ex{Q,P}(Ψ)− 2ExQ(Ψ) · ExP (Ψ),

defined by the initial state |ψ⟩ of the meter, where {Q,P} :=
QP + PQ is the anticommutator. We also have

d∆P

dg

∣∣∣∣
g=0

= 2VarP (ψ) · ImAw,

where
VarP (ψ) := ExP 2(ψ)− (ExP (ψ))

2

Aw =
⟨φ|A|ψ⟩
⟨φ|ψ⟩

A1
w A2

w

}

Aw(t) =
⟨φ|U(T − t) ·A · U(t)|ψ⟩
⟨φ|U(T − t) · U(t)|ψ⟩ =

⟨φ|U(T − t)AU(t)|ψ⟩
⟨φ|U(T )|ψ⟩

A = σπ
4
:=

σz + σx√
2

|ψ⟩ = |xi⟩ |φ⟩ = |xf ⟩

(σπ
4
)w =

1 + 1√
2

= +
√
2 [−1,+1]

(σx)w =
⟨+x |σx|+z⟩
⟨+x |+z⟩ = +1

2

C(Ψ) := Ex{Q,P}(Ψ)− 2ExQ(Ψ) · ExP (Ψ),

defined by the initial state |ψ⟩ of the meter, where {Q,P} :=
QP + PQ is the anticommutator. We also have

d∆P

dg

∣∣∣∣
g=0

= 2VarP (ψ) · ImAw,

where
VarP (ψ) := ExP 2(ψ)− (ExP (ψ))

2

Aw =
⟨φ|A|ψ⟩
⟨φ|ψ⟩

A1
w A2

w

}

Aw(t) =
⟨φ|U(T − t) ·A · U(t)|ψ⟩
⟨φ|U(T − t) · U(t)|ψ⟩ =

⟨φ|U(T − t)AU(t)|ψ⟩
⟨φ|U(T )|ψ⟩

A = σπ
4
:=

σz + σx√
2

|ψ⟩ = |xi⟩ |φ⟩ = |xf ⟩

(σπ
4
)w =

1 + 1√
2

= +
√
2 [−1,+1]

(σx)w =
⟨+x |σx|+z⟩
⟨+x |+z⟩ = +1

2

TEST SPACE

R C RI CI |φk⟩ |ψ⟩

|φ1⟩ |ψ⟩ |φ1⟩ |φ2⟩ |φ3⟩

⟨A⟩ : H → R(A) ⊂ RI Aw : H⊗H → CI

∑

k

|⟨φk|ψ⟩|2
⟨φk|A|ψ⟩
⟨φk|ψ⟩

= ⟨ψ|A|ψ⟩

⟨φ1|A|ψ⟩
⟨φ1|ψ⟩

⟨φ2|A|ψ⟩
⟨φ2|ψ⟩

⟨φn|A|ψ⟩
⟨φn|ψ⟩

λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩

⟨φ|U(tf )U †(ti)|ψ⟩
+(1−α) ⟨ψ|U(ti)A(t)U†(tf )|φ⟩

⟨φ|U(ti)U †(tf )|ψ⟩

U(t, t′) = U(t−t′) = U(t)U †(t′) A(t) := U †(t)AU(t) |φk⟩ |ψ⟩

U(t, ti)|ψ⟩ U(t, tf )|φ⟩ ⟨φ|U †(t, tf )

|ψ⟩ = 1√
3
(|1⟩+ |2⟩+ |3⟩)

|φ⟩ = 1√
3
(|1⟩+ |2⟩ − |3⟩)

Pi = |i⟩⟨i| i = 1, 2, 3 Pi = |ci⟩⟨ci|

C(Ψ) := Ex{Q,P}(Ψ)− 2ExQ(Ψ) · ExP (Ψ),

defined by the initial state |ψ⟩ of the meter, where {Q,P} :=
QP + PQ is the anticommutator. We also have

d∆P

dg

∣∣∣∣
g=0

= 2VarP (ψ) · ImAw,

where
VarP (ψ) := ExP 2(ψ)− (ExP (ψ))

2

Aw =
⟨φ|A|ψ⟩
⟨φ|ψ⟩

A1
w A2

w

}
⟨A⟩

Aw(t) =
⟨φ|U(T − t) ·A · U(t)|ψ⟩
⟨φ|U(T − t) · U(t)|ψ⟩ =

⟨φ|U(T − t)AU(t)|ψ⟩
⟨φ|U(T )|ψ⟩

A = σπ
4
:=

σz + σx√
2

|ψ⟩ = |xi⟩ |φ⟩ = |xf ⟩

(σπ
4
)w =

1 + 1√
2

= +
√
2 [−1,+1]

(σx)w =
⟨+x |σx|+z⟩
⟨+x |+z⟩ = +1

2

average



 “interpretation” as physical value in HVT (ontological model)

de Broglie-Bohm theory

hidden variable

Ak
w =

⟨φ|A|χk⟩
⟨φ|χk⟩

⟨A⟩dBB =

∫
dλA(λ)ρ(λ) ρ(λ) = |ψ(x)|2 λ x

⟨A⟩QM = ⟨ψ|A|ψ⟩

A(λ) =
⟨x|A|ψ⟩
⟨x|ψ⟩

λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩

⟨φ|U(tf )U †(ti)|ψ⟩
+(1−α) ⟨ψ|U(ti)A(t)U†(tf )|φ⟩

⟨φ|U(ti)U †(tf )|ψ⟩

λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩

⟨φ|U(tf )U †(ti)|ψ⟩
+(1−α) ⟨ψ|U(ti)A(t)U†(tf )|φ⟩

⟨φ|U(ti)U †(tf )|ψ⟩

U(t, t′) = U(t−t′) = U(t)U †(t′) A(t) := U †(t)AU(t) |φk⟩ |ψ⟩

U(t, ti)|ψ⟩ U(t, tf )|φ⟩ ⟨φ|U †(t, tf )

|ψ⟩ = 1√
3
(|1⟩+ |2⟩+ |3⟩)

|φ⟩ = 1√
3
(|1⟩+ |2⟩ − |3⟩)

Pi = |i⟩⟨i| i = 1, 2, 3 Pi = |ci⟩⟨ci|

(Pi)w =
⟨b|Pi|a⟩
⟨b|a⟩

2

Ak
w =

⟨φ|A|χk⟩
⟨φ|χk⟩

⟨A⟩dBB =

∫
dλA(λ)ρ(λ) ρ(λ) = |ψ(x)|2 λ x

⟨A⟩QM = ⟨ψ|A|ψ⟩

A(λ) =
⟨x|A|ψ⟩
⟨x|ψ⟩

λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩

⟨φ|U(tf )U †(ti)|ψ⟩
+(1−α) ⟨ψ|U(ti)A(t)U†(tf )|φ⟩

⟨φ|U(ti)U †(tf )|ψ⟩

λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩

⟨φ|U(tf )U †(ti)|ψ⟩
+(1−α) ⟨ψ|U(ti)A(t)U†(tf )|φ⟩

⟨φ|U(ti)U †(tf )|ψ⟩

U(t, t′) = U(t−t′) = U(t)U †(t′) A(t) := U †(t)AU(t) |φk⟩ |ψ⟩

U(t, ti)|ψ⟩ U(t, tf )|φ⟩ ⟨φ|U †(t, tf )

|ψ⟩ = 1√
3
(|1⟩+ |2⟩+ |3⟩)

|φ⟩ = 1√
3
(|1⟩+ |2⟩ − |3⟩)

Pi = |i⟩⟨i| i = 1, 2, 3 Pi = |ci⟩⟨ci|

(Pi)w =
⟨b|Pi|a⟩
⟨b|a⟩

2

expectation value

Ak
w =

⟨φ|A|χk⟩
⟨φ|χk⟩

⟨A⟩dBB =

∫
dλA(λ)ρ(λ) ρ(λ) = |ψ(x)|2 λ x

⟨A⟩QM = ⟨ψ|A|ψ⟩

A(λ) =
⟨x|A|ψ⟩
⟨x|ψ⟩

λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩

⟨φ|U(tf )U †(ti)|ψ⟩
+(1−α) ⟨ψ|U(ti)A(t)U†(tf )|φ⟩

⟨φ|U(ti)U †(tf )|ψ⟩

λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩

⟨φ|U(tf )U †(ti)|ψ⟩
+(1−α) ⟨ψ|U(ti)A(t)U†(tf )|φ⟩

⟨φ|U(ti)U †(tf )|ψ⟩

U(t, t′) = U(t−t′) = U(t)U †(t′) A(t) := U †(t)AU(t) |φk⟩ |ψ⟩

U(t, ti)|ψ⟩ U(t, tf )|φ⟩ ⟨φ|U †(t, tf )

|ψ⟩ = 1√
3
(|1⟩+ |2⟩+ |3⟩)

|φ⟩ = 1√
3
(|1⟩+ |2⟩ − |3⟩)

Pi = |i⟩⟨i| i = 1, 2, 3 Pi = |ci⟩⟨ci|

(Pi)w =
⟨b|Pi|a⟩
⟨b|a⟩

2

probability distribution
Ak

w =
⟨φ|A|χk⟩
⟨φ|χk⟩

⟨A⟩dBB =

∫
dλA(λ)ρ(λ) ρ(λ) = |ψ(x)|2 λ x

⟨A⟩QM = ⟨ψ|A|ψ⟩

A(λ) =
⟨x|A|ψ⟩
⟨x|ψ⟩

λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩

⟨φ|U(tf )U †(ti)|ψ⟩
+(1−α) ⟨ψ|U(ti)A(t)U†(tf )|φ⟩

⟨φ|U(ti)U †(tf )|ψ⟩

λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩

⟨φ|U(tf )U †(ti)|ψ⟩
+(1−α) ⟨ψ|U(ti)A(t)U†(tf )|φ⟩

⟨φ|U(ti)U †(tf )|ψ⟩

U(t, t′) = U(t−t′) = U(t)U †(t′) A(t) := U †(t)AU(t) |φk⟩ |ψ⟩

U(t, ti)|ψ⟩ U(t, tf )|φ⟩ ⟨φ|U †(t, tf )
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or

‘local expectation value’ in dBB theory



in general

probability of obtaining  

1 ontological model と複素確率

状態 ψ において物理量 A が値 ai である確率 p (A = ai |ψ ) は, Born の公式より

p (A = ai |ψ ) =
〈
ψ, EA

i
ψ
〉
. (1)

ここで,
{
EA

i = |ai⟩ ⟨ai|
}N
i=1
は物理量演算子Aのスペクトル測度. ここで,

{
EB

j = |bj⟩ ⟨bj |
}M
j=1

を 物理量演算子 B のスペクトル測度とすると, 式 (1)は次のように変形できる;

p (A = ai |ψ ) =
〈
ψ, EA

i ψ
〉

(2)

=
M∑

j=1

〈
ψ, EB

j EA
i ψ
〉

(3)

=
M∑

j=1

〈
bj , EA

i ψ
〉

⟨bj,ψ⟩
|⟨bj,ψ⟩|

2 .

このとき, |⟨bj,φ⟩|
2 は状態 φ において物理量 B の値が bj である確率と解釈できる;

p (B = bj |ψ ) = |⟨bj ,ψ⟩|
2 .

また,
〈
bj, EA

i φ
〉
/ ⟨bj ,φ⟩ は pre-selection φ および post-selection bj における EA

i の弱値
である. このような射影演算子の弱値を次のように書くとする;

c (A = ai |ψ,φ) :=

〈
φ, EA

i
ψ
〉

⟨φ,ψ⟩
. (4)

この表記を採用すると, 式 (2)は

p (A = ai |ψ ) =
M∑

j=1

c (A = ai |ψ, bj ) p (B = bj |ψ ) (5)

と書くことができる.

ところで, 2010年に Nicholas Harriganと Robert W. Spekkens は量子力学の隠れた変
数理論 (彼らは ontological model と呼ぶ) を分類するという仕事をした [1]. それは以下の
ようなものである;

state (preparation) ψ が実は ontic states {λk}k の混合であった考える. すなわち, 量
子論を状態 ψ で出力 A = ai を得る確率が

p (A = ai |ψ ) =
∑

k

p (A = ai |λk ) p (λk |ψ ) (6)

となるような ontic states {λk}k がすべての物理量に対して存在するという理論であると考
えるのである. このように量子論を考えるモデルを ontological model という.　この ontic

state λk が隠れた変数に対応する. この文脈において,確率 p (λk |ψ ) (状態 ψ が実は ontic

state λk であった確率)は epistemic state と呼ばれる. この量子論の ontological model を
epistemic state を用いて分類したのが上記の仕事である. (そのうえで EPR-Bellの議論を
したりしている（あまりちゃんと読んでいないけれど...）)
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数理論 (彼らは ontological model と呼ぶ) を分類するという仕事をした [1]. それは以下の
ようなものである;

state (preparation) ψ が実は ontic states {λk}k の混合であった考える. すなわち, 量
子論を状態 ψ で出力 A = ai を得る確率が

p (A = ai |ψ ) =
∑

k

p (A = ai |λk ) p (λk |ψ ) (6)

となるような ontic states {λk}k がすべての物理量に対して存在するという理論であると考
えるのである. このように量子論を考えるモデルを ontological model という.　この ontic

state λk が隠れた変数に対応する. この文脈において,確率 p (λk |ψ ) (状態 ψ が実は ontic

state λk であった確率)は epistemic state と呼ばれる. この量子論の ontological model を
epistemic state を用いて分類したのが上記の仕事である. (そのうえで EPR-Bellの議論を
したりしている（あまりちゃんと読んでいないけれど...）)
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状態 ψ において物理量 A が値 ai である確率 p (A = ai |ψ ) は, Born の公式より

p (A = ai |ψ ) =
〈
ψ, EA

i
ψ
〉
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このとき, |⟨bj,φ⟩|
2 は状態 φ において物理量 B の値が bj である確率と解釈できる;

p (B = bj |ψ ) = |⟨bj ,ψ⟩|
2 .

また,
〈
bj, EA

i φ
〉
/ ⟨bj ,φ⟩ は pre-selection φ および post-selection bj における EA

i の弱値
である. このような射影演算子の弱値を次のように書くとする;

c (A = ai |ψ,φ) :=

〈
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i
ψ
〉

⟨φ,ψ⟩
. (4)

この表記を採用すると, 式 (2)は

p (A = ai |ψ ) =
M∑

j=1

c (A = ai |ψ, bj ) p (B = bj |ψ ) (5)

と書くことができる.

ところで, 2010年に Nicholas Harriganと Robert W. Spekkens は量子力学の隠れた変
数理論 (彼らは ontological model と呼ぶ) を分類するという仕事をした [1]. それは以下の
ようなものである;

state (preparation) ψ が実は ontic states {λk}k の混合であった考える. すなわち, 量
子論を状態 ψ で出力 A = ai を得る確率が

p (A = ai |ψ ) =
∑

k

p (A = ai |λk ) p (λk |ψ ) (6)

となるような ontic states {λk}k がすべての物理量に対して存在するという理論であると考
えるのである. このように量子論を考えるモデルを ontological model という.　この ontic

state λk が隠れた変数に対応する. この文脈において,確率 p (λk |ψ ) (状態 ψ が実は ontic

state λk であった確率)は epistemic state と呼ばれる. この量子論の ontological model を
epistemic state を用いて分類したのが上記の仕事である. (そのうえで EPR-Bellの議論を
したりしている（あまりちゃんと読んでいないけれど...）)
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2 は状態 φ において物理量 B の値が bj である確率と解釈できる;
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〉
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ところで, 2010年に Nicholas Harriganと Robert W. Spekkens は量子力学の隠れた変
数理論 (彼らは ontological model と呼ぶ) を分類するという仕事をした [1]. それは以下の
ようなものである;

state (preparation) ψ が実は ontic states {λk}k の混合であった考える. すなわち, 量
子論を状態 ψ で出力 A = ai を得る確率が

p (A = ai |ψ ) =
∑

k

p (A = ai |λk ) p (λk |ψ ) (6)

となるような ontic states {λk}k がすべての物理量に対して存在するという理論であると考
えるのである. このように量子論を考えるモデルを ontological model という.　この ontic

state λk が隠れた変数に対応する. この文脈において,確率 p (λk |ψ ) (状態 ψ が実は ontic

state λk であった確率)は epistemic state と呼ばれる. この量子論の ontological model を
epistemic state を用いて分類したのが上記の仕事である. (そのうえで EPR-Bellの議論を
したりしている（あまりちゃんと読んでいないけれど...）)
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このとき, |⟨bj,φ⟩|
2 は状態 φ において物理量 B の値が bj である確率と解釈できる;

p (B = bj |ψ ) = |⟨bj ,ψ⟩|
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また,
〈
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〉
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である. このような射影演算子の弱値を次のように書くとする;
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c (A = ai |ψ, bj ) p (B = bj |ψ ) (5)

と書くことができる.

ところで, 2010年に Nicholas Harriganと Robert W. Spekkens は量子力学の隠れた変
数理論 (彼らは ontological model と呼ぶ) を分類するという仕事をした [1]. それは以下の
ようなものである;

state (preparation) ψ が実は ontic states {λk}k の混合であった考える. すなわち, 量
子論を状態 ψ で出力 A = ai を得る確率が

p (A = ai |ψ ) =
∑

k

p (A = ai |λk ) p (λk |ψ ) (6)

となるような ontic states {λk}k がすべての物理量に対して存在するという理論であると考
えるのである. このように量子論を考えるモデルを ontological model という.　この ontic

state λk が隠れた変数に対応する. この文脈において,確率 p (λk |ψ ) (状態 ψ が実は ontic

state λk であった確率)は epistemic state と呼ばれる. この量子論の ontological model を
epistemic state を用いて分類したのが上記の仕事である. (そのうえで EPR-Bellの議論を
したりしている（あまりちゃんと読んでいないけれど...）)
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{
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を 物理量演算子 B のスペクトル測度とすると, 式 (1)は次のように変形できる;
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このとき, |⟨bj,φ⟩|
2 は状態 φ において物理量 B の値が bj である確率と解釈できる;

p (B = bj |ψ ) = |⟨bj ,ψ⟩|
2 .

また,
〈
bj, EA

i φ
〉
/ ⟨bj ,φ⟩ は pre-selection φ および post-selection bj における EA

i の弱値
である. このような射影演算子の弱値を次のように書くとする;

c (A = ai |ψ,φ) :=

〈
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i
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〉

⟨φ,ψ⟩
. (4)

この表記を採用すると, 式 (2)は

p (A = ai |ψ ) =
M∑

j=1

c (A = ai |ψ, bj ) p (B = bj |ψ ) (5)

と書くことができる.

ところで, 2010年に Nicholas Harriganと Robert W. Spekkens は量子力学の隠れた変
数理論 (彼らは ontological model と呼ぶ) を分類するという仕事をした [1]. それは以下の
ようなものである;

state (preparation) ψ が実は ontic states {λk}k の混合であった考える. すなわち, 量
子論を状態 ψ で出力 A = ai を得る確率が

p (A = ai |ψ ) =
∑

k

p (A = ai |λk ) p (λk |ψ ) (6)

となるような ontic states {λk}k がすべての物理量に対して存在するという理論であると考
えるのである. このように量子論を考えるモデルを ontological model という.　この ontic

state λk が隠れた変数に対応する. この文脈において,確率 p (λk |ψ ) (状態 ψ が実は ontic

state λk であった確率)は epistemic state と呼ばれる. この量子論の ontological model を
epistemic state を用いて分類したのが上記の仕事である. (そのうえで EPR-Bellの議論を
したりしている（あまりちゃんと読んでいないけれど...）)
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1 ontological model と複素確率

状態 ψ において物理量 A が値 ai である確率 p (A = ai |ψ ) は, Born の公式より
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を 物理量演算子 B のスペクトル測度とすると, 式 (1)は次のように変形できる;
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このとき, |⟨bj,φ⟩|
2 は状態 φ において物理量 B の値が bj である確率と解釈できる;

p (B = bj |ψ ) = |⟨bj ,ψ⟩|
2 .

また,
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〉
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である. このような射影演算子の弱値を次のように書くとする;

c (A = ai |ψ,φ) :=
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i
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〉

⟨φ,ψ⟩
. (4)

この表記を採用すると, 式 (2)は

p (A = ai |ψ ) =
M∑

j=1

c (A = ai |ψ, bj ) p (B = bj |ψ ) (5)

と書くことができる.

ところで, 2010年に Nicholas Harriganと Robert W. Spekkens は量子力学の隠れた変
数理論 (彼らは ontological model と呼ぶ) を分類するという仕事をした [1]. それは以下の
ようなものである;

state (preparation) ψ が実は ontic states {λk}k の混合であった考える. すなわち, 量
子論を状態 ψ で出力 A = ai を得る確率が

p (A = ai |ψ ) =
∑

k

p (A = ai |λk ) p (λk |ψ ) (6)

となるような ontic states {λk}k がすべての物理量に対して存在するという理論であると考
えるのである. このように量子論を考えるモデルを ontological model という.　この ontic

state λk が隠れた変数に対応する. この文脈において,確率 p (λk |ψ ) (状態 ψ が実は ontic

state λk であった確率)は epistemic state と呼ばれる. この量子論の ontological model を
epistemic state を用いて分類したのが上記の仕事である. (そのうえで EPR-Bellの議論を
したりしている（あまりちゃんと読んでいないけれど...）)
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1 ontological model と複素確率
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ところで, 2010年に Nicholas Harriganと Robert W. Spekkens は量子力学の隠れた変
数理論 (彼らは ontological model と呼ぶ) を分類するという仕事をした [1]. それは以下の
ようなものである;

state (preparation) ψ が実は ontic states {λk}k の混合であった考える. すなわち, 量
子論を状態 ψ で出力 A = ai を得る確率が

p (A = ai |ψ ) =
∑
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p (A = ai |λk ) p (λk |ψ ) (6)

となるような ontic states {λk}k がすべての物理量に対して存在するという理論であると考
えるのである. このように量子論を考えるモデルを ontological model という.　この ontic

state λk が隠れた変数に対応する. この文脈において,確率 p (λk |ψ ) (状態 ψ が実は ontic

state λk であった確率)は epistemic state と呼ばれる. この量子論の ontological model を
epistemic state を用いて分類したのが上記の仕事である. (そのうえで EPR-Bellの議論を
したりしている（あまりちゃんと読んでいないけれど...）)
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このとき, |⟨bj,φ⟩|
2 は状態 φ において物理量 B の値が bj である確率と解釈できる;

p (B = bj |ψ ) = |⟨bj ,ψ⟩|
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また,
〈
bj, EA
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〉
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. (4)

この表記を採用すると, 式 (2)は

p (A = ai |ψ ) =
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c (A = ai |ψ, bj ) p (B = bj |ψ ) (5)

と書くことができる.

ところで, 2010年に Nicholas Harriganと Robert W. Spekkens は量子力学の隠れた変
数理論 (彼らは ontological model と呼ぶ) を分類するという仕事をした [1]. それは以下の
ようなものである;

state (preparation) ψ が実は ontic states {λk}k の混合であった考える. すなわち, 量
子論を状態 ψ で出力 A = ai を得る確率が

p (A = ai |ψ ) =
∑

k

p (A = ai |λk ) p (λk |ψ ) (6)

となるような ontic states {λk}k がすべての物理量に対して存在するという理論であると考
えるのである. このように量子論を考えるモデルを ontological model という.　この ontic

state λk が隠れた変数に対応する. この文脈において,確率 p (λk |ψ ) (状態 ψ が実は ontic

state λk であった確率)は epistemic state と呼ばれる. この量子論の ontological model を
epistemic state を用いて分類したのが上記の仕事である. (そのうえで EPR-Bellの議論を
したりしている（あまりちゃんと読んでいないけれど...）)
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appears naturally in the ontological interpretation of QM,	


modulo the state dependence (and complex-valuedness)



properties

さて, (5)式と (6)式は似ている. 違いは, c (A = ai |ψ,φ) が一般に複素数の値をとるも
のであることに対して, p (A = ai |λk ) が確率 ( ontic state λk で出力 A = ai を得る確率)

の意味を持つことである.

• c (A = ai |ψ,φ) を使うと, 量子力学の中で ontological model を考えることができる
かもしれない? しかし, これは c (A = ai |ψ,φ ) に明確な意味を与えられることがで
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weak value as expectation value

A|ψ⟩ = a|ψ⟩ A|φ⟩ = a|φ⟩

⟨A⟩ := ⟨ψ|A|ψ⟩

xw(t) = xi +
(xf − xi)t

T
= xcl(t) xw(t) = xcl(t)

gÂσ1 ΨMD(0, 0) e−igAwσ1ΨMD(0, 0)

ΨMD = ΨMD(θ,φ) = cos θ |0⟩+ eiφ sin θ |1⟩

Aw := A = B + C Aw = Bw + Cw Aw = BwCw

Aw := A = BC Aw = Bw Cw ai ∈ R

(P1)w = (P2)w = 1 (P3)w = −1

O(a) = a1σ1 + a2σ2 + a3σ3

⟨O(a)⟩ = Ψ†
MDO(a)ΨMD = 2g (a1 ImAw − a2 ReAw) + a3

Aw := A = a Aw = a = ReAw − 2a ImAw

|ψ⟩ |ψ⟩⟨ψ|

Γk Γs ̸=

O3 Ok Os

3
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the function λ : P(H) → C, according to the Reiz’s theorem it can be written
as same form of (3.1).

There are another conditions to the evaluation function on projection oper-
ators which appear in the Gleason’s theorem.

Theorem 3.3 (Gleason’s theorem). The dimension of the Hilbert space H sat-
isfies dim(H) ≥ 3. If the function µ : P(H) → R allows following conditions

0 ≤ µ(P ) ≤ 1 (3.42)

µ( ) = 1 (3.43)

µ

(
∑

i

Pi

)
=

∑

i

µ (Pi) {Pi} : mutually orthogonal (3.44)

then, the representation of this function µ is written as

µ(P ) = tr(ρP ) (3.45)

where ρ is a positive self-adjoint operator.

The function µ : P(H) → R is expected to be a provability measure on the
Hilbert space. The condition (3.42) is positivity of the function. Positivity keeps
the function µ bounded. The condition (3.44) is similar to linearly condition on
projection operators. But this linearity is limited between mutually orthogonal
projection operators. It means this function is not a linear functional, the repre-
sentation of the function µ is not determined by the Reiz’s theorem. Gleason’s
theorem describes the representation of µ is written as linearly despite of the
lack of linearity of µ.

We now consider the evaluation function on projection operators λ : P(H) →
C consists of the function κ : P(H) → R and another one. The function κ is
real-valued function. According to Gleason’s theorem we can determine the
representation of κ without complete linearity on projection operators.

When it doesn’t needed to take the function for a probability measure on
the Hilbert space ( or projection functions for these subspace ), the Gleason’s
theorem can be generalized for the function m : P(H) → R which has no limit
on range.

Theorem 3.4 (Genaralization of Gleason’s theorem [11]). If the function
µ : P(H) → R allows following conditions

−∞ ≪ m( ) ≪ ∞ (3.46)

m

(
∑

i

Pi

)
=

∑

i

m (Pi) {Pi} : mutually orthogonal (3.47)

29

the function λ : P(H) → C, according to the Reiz’s theorem it can be written
as same form of (3.1).

There are another conditions to the evaluation function on projection oper-
ators which appear in the Gleason’s theorem.

Theorem 3.3 (Gleason’s theorem). The dimension of the Hilbert space H sat-
isfies dim(H) ≥ 3. If the function µ : P(H) → R allows following conditions

0 ≤ µ(P ) ≤ 1 (3.42)

µ( ) = 1 (3.43)

µ

(
∑

i

Pi

)
=

∑

i

µ (Pi) {Pi} : mutually orthogonal (3.44)

then, the representation of this function µ is written as

µ(P ) = tr(ρP ) (3.45)

where ρ is a positive self-adjoint operator.

The function µ : P(H) → R is expected to be a provability measure on the
Hilbert space. The condition (3.42) is positivity of the function. Positivity keeps
the function µ bounded. The condition (3.44) is similar to linearly condition on
projection operators. But this linearity is limited between mutually orthogonal
projection operators. It means this function is not a linear functional, the repre-
sentation of the function µ is not determined by the Reiz’s theorem. Gleason’s
theorem describes the representation of µ is written as linearly despite of the
lack of linearity of µ.

We now consider the evaluation function on projection operators λ : P(H) →
C consists of the function κ : P(H) → R and another one. The function κ is
real-valued function. According to Gleason’s theorem we can determine the
representation of κ without complete linearity on projection operators.

When it doesn’t needed to take the function for a probability measure on
the Hilbert space ( or projection functions for these subspace ), the Gleason’s
theorem can be generalized for the function m : P(H) → R which has no limit
on range.

Theorem 3.4 (Genaralization of Gleason’s theorem [11]). If the function
µ : P(H) → R allows following conditions

−∞ ≪ m( ) ≪ ∞ (3.46)

m

(
∑

i

Pi

)
=

∑

i

m (Pi) {Pi} : mutually orthogonal (3.47)

29

Ak
w =

⟨φ|A|χk⟩
⟨φ|χk⟩

⟨A⟩dBB =

∫
dλA(λ)ρ(λ) ρ(λ) = |ψ(x)|2 λ x

⟨A⟩QM = ⟨ψ|A|ψ⟩

µ(E) = tr(WE) W A =
∑

i

aiE
A
i

µ

(
∑

i

Ei

)
=
∑

i

µ(Ei) {Ei}

Aw =
⟨φ|A|ψ⟩
⟨φ|ψ⟩

µ(E) = tr(WE) = α
⟨φ|E|ψ⟩
⟨φ|ψ⟩ + (1− α)

⟨ψ|E|φ⟩
⟨ψ|φ⟩

A(λ) =
⟨x|A|ψ⟩
⟨x|ψ⟩

λ(A) =
∑

i

aiµ(E
A
i ) = tr(WA) = α

⟨φ|A|ψ⟩
⟨φ|ψ⟩ + (1− α)

⟨ψ|A|φ⟩
⟨ψ|φ⟩

λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩

⟨φ|U(tf )U †(ti)|ψ⟩
+(1−α) ⟨ψ|U(ti)A(t)U†(tf )|φ⟩

⟨φ|U(ti)U †(tf )|ψ⟩

2

Ak
w =

⟨φ|A|χk⟩
⟨φ|χk⟩

⟨A⟩dBB =

∫
dλA(λ)ρ(λ) ρ(λ) = |ψ(x)|2 λ x

⟨A⟩QM = ⟨ψ|A|ψ⟩

µ(E) = tr(WE) W A =
∑

i

aiE
A
i

µ

(
∑

i

Ei

)
=
∑

i

µ(Ei) {Ei}

Aw =
⟨φ|A|ψ⟩
⟨φ|ψ⟩

µ(E) = tr(WE) = α
⟨φ|E|ψ⟩
⟨φ|ψ⟩ + (1− α)

⟨ψ|E|φ⟩
⟨ψ|φ⟩

A(λ) =
⟨x|A|ψ⟩
⟨x|ψ⟩

λ(A) =
∑

i

aiµ(E
A
i ) = tr(WA) = α

⟨φ|A|ψ⟩
⟨φ|ψ⟩ + (1− α)

⟨ψ|A|φ⟩
⟨ψ|φ⟩

λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩

⟨φ|U(tf )U †(ti)|ψ⟩
+(1−α) ⟨ψ|U(ti)A(t)U†(tf )|φ⟩

⟨φ|U(ti)U †(tf )|ψ⟩

2

mutually orthogonal

complex probability measure (extending Gleason)

T. Morita and I.T.  (2012)

then, the representation of this function m is written as

m(P ) = tr(WmP ) (3.48)

where Wm is a self-adjoint trace class operator.

This theorem removes the positivity condition and separability condition
from the original Gleason’s theorem. We now consider the generalized theorem
without the positivity. The function m is bounded because Wm is trace class.
Using this functions, the function λ : P(H) → C can be take the form of

λ(P ) = λR(P ) + iλI(P )

= tr(WRP ) + itr(WIP )

= tr((WR + iWI)P ) (3.49)

where WR,WI are self-adjoint trace class operators. (WR + iWI) is not self-
adjoint but trace class. This corresponds to the decomposition of a arbitrary
operator to a Hermite operator and a skew-Hermite operator. So the operator
(WR + iWI) is a arbitrary operator.

We now get another expression for linearity conditions. We settle proper
definition on the two-state value. First, we define physical value assignment
function µ on the projection operators P(H)in a Hilbert space H.

Definition 3.2 (The two-state value on projection operators).
A function µ : P(H) → C satisfies following condition.

1) Partial linearity condition

µ

(
∑

i

Pi

)
=

∑

i

µ (Pi) (3.50)

where {Pi} are mutually orthogonal projection operators.

2) Time symmetric condition
initial and final state is |ψ⟩, |φ⟩. these states are not orthogonal, i.e.,|ψ⟩ ̸⊥
|φ⟩. set ∀|ψ⊥⟩ ⊥ |ψ⟩, ∀|φ⊥⟩ ⊥ |φ⟩.then,

µ(Pψ) = µ(|ψ⟩⟨ψ|) = 1 (3.51)

µ(Pψ⊥) = µ(|ψ⊥⟩⟨ψ⊥|) = 0 (3.52)

µ(Pφ) = µ(|φ⟩⟨φ|) = 1 (3.53)

µ(Pφ⊥) = µ(|φ⊥⟩⟨φ⊥|) = 0 (3.54)

Then we can define the two-state value λ : N → C.
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where the representation of W is

W = α
|ψ⟩⟨φ|
⟨φ|ψ⟩ + (1− α)

|φ⟩⟨ψ|
⟨ψ|φ⟩ , α ∈ C (3.20)

Proof. The orthogonal bases include the pre-state |ψ⟩ are {|wi⟩},i.e.|w1⟩ = |ψ⟩.
λ must satisfies the condition (3.13) and (3.14) for a certain orthogonal bases
{|wi⟩}. then,

W = |ψ⟩⟨ψ|+
∑

i ̸=j

cij|wj⟩⟨wj| , cij ∈ C (3.21)

λ must satisfies the condition (3.13) and (3.14) for another orthogonal bases in
which the pre-state is included. Thus for all pair of orthogonal bases we must
make λ satisfies this conditions. Let |χ⟩ be a orthogonal state with |ψ⟩. Using
the bases {|wi⟩}, |χ⟩ can be written as

∑
i=2 ai|wi⟩. The value of λ(|χ⟩⟨χ|) must

be 0 by the time symmetric conditions (3.13) and (3.14). Then

λ(|χ⟩⟨χ|) =
∑

i ̸=j

∑

k,l=2

cijaka
∗
l tr(|wi⟩⟨wj|wk⟩⟨wl|)

=
∑

i̸=j,i,j>1

cijajai = 0

We can find cij = 0 in the case of i, j > 1. Such W is written as,

W = |ψ⟩⟨ψ|+
N∑

i=2

fi|wi⟩⟨ψ|+
N∑

j=2

gj|ψ⟩⟨wj| , {fi}, {gj} ∈ C (3.22)

fi,gj are complex numbers depend which bases {|wi⟩} we choose.

Similarly, the orthogonal bases post-state |φ⟩ are {|w′
i⟩},i.e.|w′

1⟩ = |φ⟩. Then,
W must be written as,

W =
N∑

ij

W ′
ij|w′

i⟩⟨w′
j| (3.23)

= |φ⟩⟨φ|+
N∑

i=2

f ′
i |w′

i⟩⟨φ|+
N∑

j=2

g′j|φ⟩⟨w′
j| , {f ′

i}, {g′j} ∈ C (3.24)

Also f ′
i ,g

′
j are depend on the bases {|w′

i⟩}.
For simplicity, we write (3.22) by using unnormalized states |ξ1⟩ and |ξ2⟩

which are orthogonal with |ψ⟩.

W = |ψ⟩⟨ψ|+ |ψ⟩⟨ξ1|+ |ξ2⟩⟨ψ| (3.25)

We now describe (3.25) in the bases {|w′
i⟩}. The state |ξ1⟩ and |ξ2⟩ can be

decomposed as

|ξ1⟩ = x|ψ⊥⟩+ |ξ′1⟩ (3.26)

|ξ2⟩ = y|ψ⊥⟩+ |ξ′2⟩ (3.27)
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⟨A⟩QM = ⟨ψ|A|ψ⟩

µ(P ) = tr(WP ) W A =
∑

i

aiPi
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A(λ) =
⟨x|A|ψ⟩
⟨x|ψ⟩

λ(A) =
∑

i

aiµ(Pi) = tr(WA) =
⟨φ|A|ψ⟩
⟨φ|ψ⟩ + (1− α)

⟨ψ|A|φ⟩
⟨ψ|φ⟩

λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩

⟨φ|U(tf )U †(ti)|ψ⟩
+(1−α) ⟨ψ|U(ti)A(t)U†(tf )|φ⟩

⟨φ|U(ti)U †(tf )|ψ⟩

λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩

⟨φ|U(tf )U †(ti)|ψ⟩
+(1−α) ⟨ψ|U(ti)A(t)U†(tf )|φ⟩

⟨φ|U(ti)U †(tf )|ψ⟩

U(t, t′) = U(t−t′) = U(t)U †(t′) A(t) := U †(t)AU(t) |φk⟩ |ψ⟩
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TEST SPACE

R C RI CI |φk⟩ |ψ⟩

|φ1⟩ |ψ⟩ |φ1⟩ |φ2⟩ |φ3⟩

⟨A⟩ : H → R(A) ⊂ RI Aw : H⊗H → CI

∑

k

|⟨φk|ψ⟩|2
⟨φk|A|ψ⟩
⟨φk|ψ⟩

= ⟨ψ|A|ψ⟩

⟨φ1|A|ψ⟩
⟨φ1|ψ⟩

⟨φ2|A|ψ⟩
⟨φ2|ψ⟩

⟨φn|A|ψ⟩
⟨φn|ψ⟩

K(α) = ⟨φ|uA(α)|ψ⟩

Kk(α) = ⟨φ|uA(α)|χk⟩⟨χk|ψ⟩

|χ1⟩ |χ2⟩ |χ3⟩ p

cn → ⟨xn|ψ⟩ U(T ) → 1
⟨φ|xn⟩⟨xn|ψ⟩

⟨φ|ψ⟩ =
⟨φ|Ex

n|ψ⟩
⟨φ|ψ⟩

I :=
1

2
lim
α→0

1

|K(α)|2
∂

∂α

(
|K(α)|2 −

∑

k

|Kk(α)|2
)
.
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distribution for two (non-commuting) observables A, B
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2. A Family of Quasiprobability Distribution of Two Observables Parametrised
with a Real Number

Throughout this document, in order to avoid unnecessary arguments and distraction, we

conduct a rather ”formal” computation and state our mathematical results in a laxer way.

However, the author has confirmed that most of the arguments can be elaborated in the

realm of measure and integration theory and the theory of generalised functions (Schwartz’s

distribution theory).

Definition of the Distribution of Interest. Let |φ⟩ ∈ H, ∥φ∥ = 1 be a normalised vector

in a Hilbert space H, and let A, B be self-adjoint operators on H. For a real number α ∈ R,
we define a distribution

uαAB[φ](s, t) := ⟨φ, ei(1−α)sAeitBeiαsAφ⟩, (18)

and its Fourier transform

wαAB[φ](a, b) := (uαAB[φ])
∧ (a, b),

=

∫

R2

e−i(as+bt)uαAB[φ](s, t) dm2(s, t). (19)

For our purpose, we are interested in the latter distribution wαAB[φ](a, b), of which properties

we shall briefly describe below.

2.1. Quasiprobability Distribution wαAB[φ](a, b) and its Marginals

Two basic properties of the distribution wαAB[φ](a, b) regarding integrations are mentioned

below.

Total Integration. Observing that the value of the Fourier transform at the point 0

coincides with the total integration of the original function as

f̂(0) =

∫

Rn

e−i⟨0,x⟩f(x) dmn(x)

=

∫

Rn

f(x) dmn(x), (20)

one has

∫

R2

wαAB[φ](a, b) dm2(a, b) = ŵαAB[φ](0, 0)

= uαAB[φ](−0,−0)

= ∥φ∥2 = 1, (21)

which in particular implies that the distribution wαAB[φ](a, b) in question is a quasiprobability

distribution.
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1. Preliminaries

Notes of the Mathematical Notations Used. Throughout this paper, we denote byK either

the real field R or the complex field C, and define K× := K \ {0}. The complex conjugate of a

complex number c ∈ C is denoted by c. In order to avoid confusion, we denote the collection

of all natural numbers including 0 by N0, and N× := N0 \ {0}. Since our primary interest

is on quantum mechanics, Hilbert spaces are always assumed to be complex unless stated

otherwise. Conforming to the convention in physical literature, an inner product ⟨·, ·⟩ defined
on a complex linear space is anti-linear in its first argument and linear on the second. For a

self-adjoint operator A on a Hilbert space H, we denote its domain by dom(A), whereby we

define its expectation value by

[A;φ] :=
⟨φ, Aφ⟩
∥φ∥2 , |φ⟩ ∈ dom(A), (1)

For simplicity of notation, we adopt the natural units, where we have ! = 1 in particular.

Fourier Transformation. It proves useful to first renormalise the n-dimensional Lebesgue

measure βn on (Rn,Bn), n ∈ N× by

dmn(x) := (2π)−n/2dβn(x), (2)

and accordingly redefine the Lp-norm and the convolution by

∥f∥p :=
(∫

Rn

|f(x)|p dmn(x)

)1/p

, f ∈ Lp(Rn), (3)

(f ∗ g)(x) :=
∫

Rn

f(x− y)g(y) dmn(y), f, g ∈ L1(Rn), (4)

respectively. For brevity, we write dm1 = dm whenever there is no risk for confusion.

Now, for a function f ∈ L1(Rn), recall that the functions f̂ , f̌ : Rn → C defined by

f̂(q) :=

∫

Rn

e−i⟨q,x⟩f(x) dmn(x), (5)

f̌(q) :=

∫

Rn

ei⟨q,x⟩f(x) dmn(x), (6)

with the scalar product on Rn given by

⟨x, y⟩ :=
n∑

i=1

xiyi, x, y ∈ Rn, (7)

are respectively called the Fourier transform and the inverse Fourier transform of f . The C-
linear map F that maps f to its Fourier transform f̂ is called the Fourier transformation. For

f, g ∈ L1(Rn), the following properties under the convolution (4), involution f∗(x) := f(−x)

and translation (τaf)(x) := f(x+ a) are basic:

(̂f ∗ g) = f̂ · ĝ, (8)

f̂∗ = f̂ (9)

(̂τaf)(t) = ei⟨a,x⟩f̂(t), a ∈ R, (10)

The Fourier transormation F plays particularly well on the subspace S (Rn) ⊂ L1(Rn),

where it becomes a linear bijection of S (Rn) onto S (Rn), of which inverse is given by

3
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2. A Family of Quasiprobability Distribution of Two Observables Parametrised
with a Real Number

Throughout this document, in order to avoid unnecessary arguments and distraction, we

conduct a rather ”formal” computation and state our mathematical results in a laxer way.

However, the author has confirmed that most of the arguments can be elaborated in the

realm of measure and integration theory and the theory of generalised functions (Schwartz’s

distribution theory).

Definition of the Distribution of Interest. Let |φ⟩ ∈ H, ∥φ∥ = 1 be a normalised vector

in a Hilbert space H, and let A, B be self-adjoint operators on H. For a real number α ∈ R,
we define a distribution

uαAB[φ](s, t) := ⟨φ, ei(1−α)sAeitBeiαsAφ⟩, (18)

and its Fourier transform

wαAB[φ](a, b) := (uαAB[φ])
∧ (a, b),

=

∫

R2

e−i(as+bt)uαAB[φ](s, t) dm2(s, t). (19)

For our purpose, we are interested in the latter distribution wαAB[φ](a, b), of which properties

we shall briefly describe below.

2.1. Quasiprobability Distribution wαAB[φ](a, b) and its Marginals

Two basic properties of the distribution wαAB[φ](a, b) regarding integrations are mentioned

below.

Total Integration. Observing that the value of the Fourier transform at the point 0

coincides with the total integration of the original function as

f̂(0) =

∫

Rn

e−i⟨0,x⟩f(x) dmn(x)

=

∫

Rn

f(x) dmn(x), (20)

one has

∫

R2

wαAB[φ](a, b) dm2(a, b) = ŵαAB[φ](0, 0)

= uαAB[φ](−0,−0)

= ∥φ∥2 = 1, (21)

which in particular implies that the distribution wαAB[φ](a, b) in question is a quasiprobability

distribution.
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marginals
Marginal Distribution. We define the marginal distributions of the quasiprobability

distribution as

P[A = a;wαAB[φ]] :=

∫

R
wαAB[φ](a, b) dm(b) (22)

P[B = a;wαAB[φ]] :=

∫

R
wαAB[φ](a, b) dm(a) (23)

One sees below that the marginal distributions respectively coincide with the probability

distribution describing the behaviour of the outcome of the ideal quantum measurement of

the observables A and B.

To see this, we make a small mathematical preparation. For a self-adjoint operator X and

a normailsed vector |φ⟩ ∈ H, ∥φ∥ = 1, let

µφX(B) := ⟨φ, EX(B)φ⟩ (24)

denote the probability measure defined through the spectral measure EX of X. Defining the

Fourier transform

(Fν)(t) = ν̂(t) :=

∫

Rn

e−itx dν(x) (25)

of a complex measure ν, where the r. h. s. is understood as the Lebesgue integration with

respect to ν, one has

uαAB[φ](0, t) = ⟨φ, eitBφ⟩

=

∫

Rn

eitb d⟨φ, EX(b)φ⟩

= µ̌φB(t), (26)

and likewise

uαAB[φ](s, 0) = µ̌φA(s). (27)

Based on the above results, one then computes the marginal distribution of the quasiprob-

ability distribution wαAB[φ](a, b) as

P[A = a;wαAB[φ]] =

∫

R
wαAB[φ](a, b) dm(b)

=

∫

R
((F ⊗ F )uαAB[φ]) (a, b) dm(b)

= (F ⊗ I)uαAB[φ](a, 0)

=
(
F µ̌φA

)
(a)

= µφA(a), (28)

and analogously,

P[B = b;wαAB[φ]] = µφB(b). (29)

The results show that the quasiprobability distribution wαAB[φ](a, b) has some remarkable

useful properties that are also shared with the familiar Wigner quasiprobability distribution.

In fact, we shall shortly see below that the Wigner quasiprobability distribution belongs as

a special case to the family of quasiprobability distributions wαAB[φ](a, b) of our current

interest.
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Realness of the Quasiprobability Distribution w1/2
AB(a, b;φ). Speaking of the Wigner

quasiprobability distribution, we argue that the quasiprobability distributions wαAB[φ](a, b)

is real if and only if α = 1/2. Indeed, as the Fourier transform of uαAB[φ](s, t), one sees that

the quasiprobability distributions wαAB[φ](a, b) is real

wαAB[φ] = wαAB[φ], (30)

if and only if the distribution uαAB is self-adjoint (cf. (9)), i.e.,

(uαAB[φ])
∗ = uαAB[φ], (31)

if and only if α = 1/2 (one may check the last statement directly from definition).

2.2. Quasiexpectation Value and Quasicovariance of wαAB[φ](a, b)

Some basic properties of the quasiprobability distribution wαAB[φ](a, b) regarding its “quasi-

expectation value” and “quasicovariance” is presented, and its relation to the (quantum)

expectation value and covariance of the observables A and B is revealed below.

Expectation Value. Defining the “quasiexpectation value” of the quasiprobability distri-

bution wαAB[φ](a, b) as

E[A;wαAB[φ]] :=

∫

R
a wαAB[φ](a, b)dm2(a, b), (32)

E[B;wαAB[φ]] :=

∫

R
b wαAB[φ](a, b)dm2(a, b), (33)

one finds that they respectively coincide with the expectation values of the outcomes of

the ideal measurement of the observables A and B on the quantum state |φ⟩. Indeed, one
may directly demonstrate it by utilising the previous results (28), (29) on the marginals

of the quasiprobability distribution wαAB[φ](a, b), however for later convenience, we take an

alternative approach based on the relations (11) and (12) instead. Now, observing that

awαAB[φ](a, b) = a (uαAB[φ])
∧ (a, b)

= i−1 (∂1u
α
AB[φ])

∧ (a, b) (34)

one has

E[A;wαAB[φ]] =

∫

R2

a wαAB[φ](a, b)dm2(a, b)

=

∫

R2

i−1 (∂1u
α
AB[φ])

∧ (a, b) dm2(a, b)

= i−1 (∂1u
α
AB[φ]) (0, 0)

= i−1 ∂

∂s
⟨φ, ei(1−α)sAeitBeiαsAφ⟩

∣∣∣∣
(s,t)=(0,0)

= (1− α)⟨φ, Aφ⟩+ α⟨φ, Aφ⟩

= [A;φ]. (35)
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1. Preliminaries

Notes of the Mathematical Notations Used. Throughout this paper, we denote byK either

the real field R or the complex field C, and define K× := K \ {0}. The complex conjugate of a

complex number c ∈ C is denoted by c. In order to avoid confusion, we denote the collection

of all natural numbers including 0 by N0, and N× := N0 \ {0}. Since our primary interest

is on quantum mechanics, Hilbert spaces are always assumed to be complex unless stated

otherwise. Conforming to the convention in physical literature, an inner product ⟨·, ·⟩ defined
on a complex linear space is anti-linear in its first argument and linear on the second. For a
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define its expectation value by

[A;φ] :=
⟨φ, Aφ⟩
∥φ∥2 , |φ⟩ ∈ dom(A), (1)

For simplicity of notation, we adopt the natural units, where we have ! = 1 in particular.

Fourier Transformation. It proves useful to first renormalise the n-dimensional Lebesgue

measure βn on (Rn,Bn), n ∈ N× by

dmn(x) := (2π)−n/2dβn(x), (2)

and accordingly redefine the Lp-norm and the convolution by

∥f∥p :=
(∫

Rn

|f(x)|p dmn(x)

)1/p

, f ∈ Lp(Rn), (3)

(f ∗ g)(x) :=
∫

Rn

f(x− y)g(y) dmn(y), f, g ∈ L1(Rn), (4)

respectively. For brevity, we write dm1 = dm whenever there is no risk for confusion.
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Rn
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Rn

ei⟨q,x⟩f(x) dmn(x), (6)

with the scalar product on Rn given by

⟨x, y⟩ :=
n∑

i=1

xiyi, x, y ∈ Rn, (7)

are respectively called the Fourier transform and the inverse Fourier transform of f . The C-
linear map F that maps f to its Fourier transform f̂ is called the Fourier transformation. For
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the inverse Fourier transformation (recall that one does not necessarily has f̂ ∈ L1(Rn) for
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0 , (11)
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0 , (12)
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0 .

Linear Transformation of Distributions. Let T ∈ GL(n;R) be an invertible real matrix.
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(x
t

)
, t ∈ R× (15)
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λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩

⟨φ|U(tf )U †(ti)|ψ⟩
+(1−α) ⟨ψ|U(ti)A(t)U†(tf )|φ⟩

⟨φ|U(ti)U †(tf )|ψ⟩

U(t, t′) = U(t−t′) = U(t)U †(t′) A(t) := U †(t)AU(t) |φk⟩ |ψ⟩

U(t, ti)|ψ⟩ U(t, tf )|φ⟩ ⟨φ|U †(t, tf )
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Aw := A = B + C Aw = Bw + Cw Aw = BwCw
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Quantum Covariance. Defining the “quasicovariance” of the quasiprobability distribu-

tion wαAB[φ](a, b) as

CV[A,B;wαAB[φ]] := E[(A− E[A;wαAB[φ]])(B − E[B;wαAB[φ]]);w
α
AB[φ]]

= E[AB;wαAB[φ]]− E[A;wαAB[φ]] · E[B;wαAB[φ]], (37)

where

E[AB;wαAB[φ]] :=

∫

R2

ab wαAB[φ](a, b)dm2(a, b), (38)

one finds below that, for the case α = 1/2, it coincides with the quantity

[A,B;φ] := [(AB +BA)/2;φ]− [A;φ] · [B;φ] (39)

occasionally called the (symmetric) quantum covariance of the observable A and B.

The demonstration is quite straightforward. Utilising the same technique introduced in

the previous paragraph, first observe that

E[AB;wαAB[φ]] =

∫

R2

ab wαAB[φ](a, b)dm2(a, b)

=

∫

R2

i−2 (∂1∂2u
α
AB[φ])

∧ (a, b) dm2(a, b)

= i−2 (∂1∂2u
α
AB[φ]) (0, 0)

= i−2 ∂

∂s

∂

∂t
⟨φ, ei(1−α)sAeitBeiαsAφ⟩

∣∣∣∣
(s,t)=(0,0)

= (1− α)⟨φ, ABφ⟩+ α⟨φ, BAφ⟩, (40)

which, for the choice α = 1/2, reduces to

E[AB;w1/2
AB[φ]] = [(AB +BA)/2;φ]. (41)

Combining the results (35), (36) and (41), one then finally has

CV[A,B;w1/2
AB[φ]] = [(AB +BA)/2;φ]− [A;φ] · [B;φ]

= [A,B;φ], (42)

which was to be demonstrated.

As we shall shortly see in the next subsection, the two-state value emerges as the condi-

tional expectation of the quasiprobability distribution wαAB[φ](a, b). It occurred to the author

that the short paper by Sagawa [1] pointed out the relation between symmetric covariance

function and the weak value. Giving it a short glance, it seems that the whole discussion

may be made more clear under the general framework we are currently developing in this

document.

2.3. Conditional Quasiexpectation of wαAB[φ](a, b) and the Two-state Value

The concept of conditional “quasiexpectation” is defined in analogue to the standard

notion of conditional expectation. The relation between the conditional quasiexpectation

of wαAB[φ](a, b) and the parametrised two-state value is revealed below.
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relation to previously known quasiprobability distributions 

2.5. Relation to the Other Quasiprobability Distributions Proposed

We argue below that the family of quasiprobabilty distributions wαAB[φ](a, b) of our interest

serves as a generalisation of the other well known proposals of quasiprobabilty distributions,

of which two we shall mention.

Wigner Quasiprobability Distribution. The Wigner Quasiprobability Distribution is a

special case of the distribution defined earlier

Wψ(x, p) = w1/2
p̂x̂ [ψ](p, x), (58)

for the choice H = L2(R2), A = p̂, B = x̂ and α = 1/2. Indeed, one has

w1/2
p̂x̂ [ψ](p, x) = (F ⊗ I)(I ⊗ F)u1/2p̂x̂ [ψ](p, x)

= (F ⊗ I)⟨x, ei1/2yp̂ψ⟩∗⟨x, ei1/2yp̂ψ⟩

=

∫

R
e−ixyψ(x− y/2)ψ(x+ y/2) dm(y)

=

∫

R
ψ(x+ y/2)ψ(x− y/2)eixy dm(y)

= Wψ(x, p), (59)

where we have used (56) in the second equality.

Kirkwood Function. The Kirkwood function is a special case of the distribution defined

earlier

K(a, b;φ) = w1
AB[φ](a, b) (60)

for the case α = 1. The demonstration is quite straightforward, for indeed one has from (57):

w1
AB[φ](a, b) =

(
⟨b, EA(·)φ⟩0 ∗ ⟨b, EA(·)φ⟩1

)
(a)

= (⟨φ, b⟩δ0 ∗ ⟨b, EA(·)φ⟩) (a)

= ⟨φ, b⟩⟨b, EA(a)φ⟩

= ⟨φ, b⟩⟨b, a⟩⟨a,φ⟩

= K(a, b;φ), (61)

where we have used (16) in the second equalty.
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gives the unique case when                        becomes real

which is equivalent to

[A;φ] =

∫

R
α[A; b,φ] d|⟨b,φ⟩|2. (51)

In particular, choosing B = Πf := |φf ⟩⟨φf |, b = 1 and α = 1, one has the familiar relation

[A;φi] =
∑

φf∈B
Aw · |⟨φf ,φi⟩|2 (52)

as a special case of the above relation (51), where we have defined the weal value as

Aw := 1[A;φf ,φi]

= CE[A|Πf = 1;w1
AΠf

[φ]] (53)

Various authors infer from the (special case) relation (52) that the weak value serves as some

form of the conditional quasiexpectation of the quantum operator A given the condition

Πf = 1. This view is confirmed in the general framework discussed in our document, where

it has been demonstrated to be nothing but the conditional quasiexpectation of the explicitly

provided (!) quasiprobability distribution wαAB[φ](a, b).

2.4. Direct Representation of the Quasiprobability Distribution wαAB[φ](a, b)

For later use, we give an explicit computation of wαAB[φ](a, b) in this subsection. We argue

below that

wαAB[φ](a, b) =
(
⟨b, EA(·)φ⟩(1−α) ∗ ⟨b, EA(·)φ⟩α

)
(a), (54)

where |b⟩ denotes the eigenvector associated to the eigenvalue b ∈ R of the self-adjoint oper-

ator B, and the r. h. s. of the above equality is understood as the convolution of the function

a %→ ⟨b, EA(a)φ⟩ scaled by the real parameter α ∈ R, and its complex conjugate scaled by

1− α (recall the definition of the scaling (15) and (16)). To see this, first observe that

wαAB[φ] = (F ⊗ F )uαAB[φ]

= (F ⊗ I)(I ⊗ F )uαAB[φ]. (55)

Now,

(I ⊗ F )uαAB[φ](s, b) = ⟨φ, ei(1−α)sAEB(b)e
iαsAφ⟩

= ⟨φ, ei(1−α)sAb⟩⟨b, eiαsAφ⟩

= ⟨b, ei(1−α)sAφ⟩∗⟨b, eiαsAφ⟩ (56)

hence

(F ⊗ I)(I ⊗ F )uαAB[φ](a, b) =
(
⟨b, EA(·)φ⟩(1−α) ∗ ⟨b, EA(·)φ⟩α

)
(a), (57)

which was to be demonstrated.

We note here that, instead of relying on the (relatively elegant, but somewhat abstract)

technique based on the properties of the Fourier transformation in order to compute the

quasiexpectation value (35), (36), quasicovariance (42) and conditional quasiexpectation

(80) performed earlier, one may utilise the result (57) obtained here to perform a much

more concrete and direct computation to obtain the same results.
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(or          )

TEST SPACE

R C RI CI |φk⟩ |ψ⟩

|φ1⟩ |ψ⟩ |φ1⟩ |φ2⟩ |φ3⟩ α = 0

⟨A⟩ : H → R(A) ⊂ RI Aw : H⊗H → CI

∑

k

|⟨φk|ψ⟩|2
⟨φk|A|ψ⟩
⟨φk|ψ⟩

= ⟨ψ|A|ψ⟩

⟨φ1|A|ψ⟩
⟨φ1|ψ⟩

|b⟩

⟨φ2|A|ψ⟩
⟨φ2|ψ⟩

⟨φn|A|ψ⟩
⟨φn|ψ⟩

K(α) = ⟨φ|uA(α)|ψ⟩

Kk(α) = ⟨φ|uA(α)|χk⟩⟨χk|ψ⟩

|χ1⟩ |χ2⟩ |χ3⟩ p

cn → ⟨xn|ψ⟩ U(T ) → 1
⟨φ|xn⟩⟨xn|ψ⟩

⟨φ|ψ⟩ =
⟨φ|Ex

n|ψ⟩
⟨φ|ψ⟩

I :=
1

2
lim
α→0

1

|K(α)|2
∂

∂α

(
|K(α)|2 −

∑

k

|Kk(α)|2
)
.



conditional quasiprobability 
Two-state Value as Conditional Quasiexpectation. We define the conditional quasiprob-

ability of A given the outcome b of B of the quasiprobability distribution wαAB[φ](a, b)

as

CP[A = a|B = b;wαAB[φ]] :=
wαAB[φ](a, b)

P[B = b;wαAB[φ]]

=
wαAB[φ](a, b)

|⟨b,φ⟩|2 , (43)

where the denominator is defined as in (23), which one computes as

P[B = b;wαAB[φ]] = µφB(b) = |⟨b,φ⟩|2. (44)

from the previous result (29). Now, we define conditional “quasiexpectation” of A given the

outcome b of B of the quasiprobability distribution wαAB[φ](a, b) as

CE[A|B = b;wαAB[φ]] :=

∫

R
a dCP[A = a|B = b;wαAB[φ]]. (45)

Observing that
∫

R
a wαAB[φ](a, b)dm(a) =

∫

R
i−1F ⊗ F (∂1u

α
AB[φ])(a, b)dm(a)

= i−1I ⊗ F (∂1u
α
AB[φ]|s=0)(b)

= (1− α)⟨φ, AEB(b)φ⟩+ α⟨φ, EB(b)Aφ⟩

= α⟨φ, b⟩⟨b, Aφ⟩+ (1− α)⟨φ, b⟩⟨b, Aφ⟩, (46)

one has, by combining the above intermediate results (44) and (79), the final result

CE[A|B = b;wαAB[φ]] = α
⟨b, Aφ⟩
⟨b,φ⟩ + (1− α)

⟨b, Aφ⟩
⟨b,φ⟩

= α[A; b,φ]. (47)

Here, the quantity

α[A;φf ,φi] := α
⟨φf , Aφi⟩
⟨φf ,φi⟩

+ (1− α)
⟨φf , Aφi⟩
⟨φf ,φi⟩

, α ∈ C, (48)

denotes the parametrised two-state value, which was recently introduced by Morita et al.

in 2013 [2]. One sees above that the parametrised two-state value α[A; b,φ] coincides

with the conditional quasiexpectation of A given the outcome B = b of the quasiprobability

distribution wαAB[φ](a, b).

Law of Total Probability. It is a basic result of measure and integration theory that the

equality

E[A; ρAB] =

∫

R
CE[A|B = b; ρAB] dP[B = b; ρAB] (49)

holds for any distribution ρAB(a, b). Applying it to our results obtained, one has

E[A;wαAB[φ]] =

∫

R
CE[A|B = b;wαAB[φ]] dP[B = b;wαAB[φ]], (50)
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outcome b of B of the quasiprobability distribution wαAB[φ](a, b) as
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R
a dCP[A = a|B = b;wαAB[φ]]. (45)
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R
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∫

R
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α
AB[φ])(a, b)dm(a)

= i−1I ⊗ F (∂1u
α
AB[φ]|s=0)(b)
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relevant to ‘postselected measurement’

TEST SPACE

R C RI CI |φk⟩ |ψ⟩

|φ1⟩ |ψ⟩ |φ1⟩ |φ2⟩ |φ3⟩

⟨A⟩ : H → R(A) ⊂ RI Aw : H⊗H → CI

∑

k

|⟨φk|ψ⟩|2
⟨φk|A|ψ⟩
⟨φk|ψ⟩

= ⟨ψ|A|ψ⟩

⟨φ1|A|ψ⟩
⟨φ1|ψ⟩

|b⟩

⟨φ2|A|ψ⟩
⟨φ2|ψ⟩

⟨φn|A|ψ⟩
⟨φn|ψ⟩

K(α) = ⟨φ|uA(α)|ψ⟩

Kk(α) = ⟨φ|uA(α)|χk⟩⟨χk|ψ⟩

|χ1⟩ |χ2⟩ |χ3⟩ p

cn → ⟨xn|ψ⟩ U(T ) → 1
⟨φ|xn⟩⟨xn|ψ⟩

⟨φ|ψ⟩ =
⟨φ|Ex

n|ψ⟩
⟨φ|ψ⟩

I :=
1

2
lim
α→0

1

|K(α)|2
∂

∂α

(
|K(α)|2 −

∑

k

|Kk(α)|2
)
.
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A(λ) =
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⟨φ|ψ⟩ + (1− α)

⟨ψ|A|φ⟩
⟨ψ|φ⟩

λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩
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λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩
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U(t, t′) = U(t−t′) = U(t)U †(t′) A(t) := U †(t)AU(t) |φk⟩ |ψ⟩
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representation in terms of probability 

with

which is equivalent to

[A;φ] =

∫

R
α[A; b,φ] d|⟨b,φ⟩|2. (51)

In particular, choosing B = Πf := |φf ⟩⟨φf |, b = 1 and α = 1, one has the familiar relation

[A;φi] =
∑

φf∈B
Aw · |⟨φf ,φi⟩|2 (52)

as a special case of the above relation (51), where we have defined the weal value as

Aw := 1[A;φf ,φi]

= CE[A|Πf = 1;w1
AΠf

[φ]] (53)

Various authors infer from the (special case) relation (52) that the weak value serves as some

form of the conditional quasiexpectation of the quantum operator A given the condition

Πf = 1. This view is confirmed in the general framework discussed in our document, where

it has been demonstrated to be nothing but the conditional quasiexpectation of the explicitly

provided (!) quasiprobability distribution wαAB[φ](a, b).

2.4. Direct Representation of the Quasiprobability Distribution wαAB[φ](a, b)

For later use, we give an explicit computation of wαAB[φ](a, b) in this subsection. We argue

below that

wαAB[φ](a, b) =
(
⟨b, EA(·)φ⟩(1−α) ∗ ⟨b, EA(·)φ⟩α

)
(a), (54)

where |b⟩ denotes the eigenvector associated to the eigenvalue b ∈ R of the self-adjoint oper-

ator B, and the r. h. s. of the above equality is understood as the convolution of the function

a %→ ⟨b, EA(a)φ⟩ scaled by the real parameter α ∈ R, and its complex conjugate scaled by

1− α (recall the definition of the scaling (15) and (16)). To see this, first observe that

wαAB[φ] = (F ⊗ F )uαAB[φ]

= (F ⊗ I)(I ⊗ F )uαAB[φ]. (55)

Now,

(I ⊗ F )uαAB[φ](s, b) = ⟨φ, ei(1−α)sAEB(b)e
iαsAφ⟩

= ⟨φ, ei(1−α)sAb⟩⟨b, eiαsAφ⟩

= ⟨b, ei(1−α)sAφ⟩∗⟨b, eiαsAφ⟩ (56)

hence

(F ⊗ I)(I ⊗ F )uαAB[φ](a, b) =
(
⟨b, EA(·)φ⟩(1−α) ∗ ⟨b, EA(·)φ⟩α

)
(a), (57)

which was to be demonstrated.

We note here that, instead of relying on the (relatively elegant, but somewhat abstract)

technique based on the properties of the Fourier transformation in order to compute the

quasiexpectation value (35), (36), quasicovariance (42) and conditional quasiexpectation

(80) performed earlier, one may utilise the result (57) obtained here to perform a much

more concrete and direct computation to obtain the same results.
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1. Preliminaries

Notes of the Mathematical Notations Used. Throughout this paper, we denote byK either

the real field R or the complex field C, and define K× := K \ {0}. The complex conjugate of a

complex number c ∈ C is denoted by c. In order to avoid confusion, we denote the collection

of all natural numbers including 0 by N0, and N× := N0 \ {0}. Since our primary interest

is on quantum mechanics, Hilbert spaces are always assumed to be complex unless stated

otherwise. Conforming to the convention in physical literature, an inner product ⟨·, ·⟩ defined
on a complex linear space is anti-linear in its first argument and linear on the second. For a

self-adjoint operator A on a Hilbert space H, we denote its domain by dom(A), whereby we

define its expectation value by

[A;φ] :=
⟨φ, Aφ⟩
∥φ∥2 , |φ⟩ ∈ dom(A), (1)

For simplicity of notation, we adopt the natural units, where we have ! = 1 in particular.

Fourier Transformation. It proves useful to first renormalise the n-dimensional Lebesgue

measure βn on (Rn,Bn), n ∈ N× by

dmn(x) := (2π)−n/2dβn(x), (2)

and accordingly redefine the Lp-norm and the convolution by

∥f∥p :=
(∫

Rn

|f(x)|p dmn(x)

)1/p

, f ∈ Lp(Rn), (3)

(f ∗ g)(x) :=
∫

Rn

f(x− y)g(y) dmn(y), f, g ∈ L1(Rn), (4)

respectively. For brevity, we write dm1 = dm whenever there is no risk for confusion.

Now, for a function f ∈ L1(Rn), recall that the functions f̂ , f̌ : Rn → C defined by

f̂(q) :=

∫

Rn

e−i⟨q,x⟩f(x) dmn(x), (5)

f̌(q) :=

∫

Rn

ei⟨q,x⟩f(x) dmn(x), (6)

with the scalar product on Rn given by

⟨x, y⟩ :=
n∑

i=1

xiyi, x, y ∈ Rn, (7)

are respectively called the Fourier transform and the inverse Fourier transform of f . The C-
linear map F that maps f to its Fourier transform f̂ is called the Fourier transformation. For

f, g ∈ L1(Rn), the following properties under the convolution (4), involution f∗(x) := f(−x)

and translation (τaf)(x) := f(x+ a) are basic:

(̂f ∗ g) = f̂ · ĝ, (8)

f̂∗ = f̂ (9)

(̂τaf)(t) = ei⟨a,x⟩f̂(t), a ∈ R, (10)

The Fourier transormation F plays particularly well on the subspace S (Rn) ⊂ L1(Rn),

where it becomes a linear bijection of S (Rn) onto S (Rn), of which inverse is given by

3

convolution

the inverse Fourier transformation (recall that one does not necessarily has f̂ ∈ L1(Rn) for

f ∈ L1(Rn) in general). One then has

D(α)(Ff) = (−i)|α|F (xαf), α ∈ Nn
0 , (11)

F (D(α)f) = i|α|qαFf, α ∈ Nn
0 , (12)

where we define |α| := α1 + · · ·+ αn for a multi-index α ∈ Nn
0 .

Linear Transformation of Distributions. Let T ∈ GL(n;R) be an invertible real matrix.

Defining

fT (x) := | det(T )|−1f(T−1x) (13)

for an integrable function f ∈ L1(Rn), one has the relation
∫

Rn

g(x)fT (x) dmn(x) =

∫

Rn

g(Tx)f(x) dmn(x) (14)

through the classical result of analysis (change of variables), whenever the integration exists.

Note that the familiar scaling

ft(x) := |t|−nf
(x
t

)
, t ∈ R× (15)

is the special case for T = tI, where I denotes the identity operator. For the case t = 0, i.e.,

det(T ) = 0, it is convenient to define

f0(x) :=

(∫

Rn

f(x) dmn(x)

)
δ0(x), (16)

where δ0 denotes the delta distribution centred at 0.

In relation to the Fourier transformation, one has

(̂fT )(q) =

∫

Rn

e−i⟨q,x⟩fT (x) dmn(x)

=

∫

Rn

e−i⟨q,Tx⟩f(x) dmn(x)

=

∫

Rn

e−i⟨T ∗q,x⟩f(x) dmn(x)

= f̂(T ∗q), (17)

where T ∗ denotes the adjoint (in this case, the transpose) of the Matrix T .

4
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λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩

⟨φ|U(tf )U †(ti)|ψ⟩
+(1−α) ⟨ψ|U(ti)A(t)U†(tf )|φ⟩

⟨φ|U(ti)U †(tf )|ψ⟩

λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩

⟨φ|U(tf )U †(ti)|ψ⟩
+(1−α) ⟨ψ|U(ti)A(t)U†(tf )|φ⟩

⟨φ|U(ti)U †(tf )|ψ⟩

U(t, t′) = U(t−t′) = U(t)U †(t′) A(t) := U †(t)AU(t) |φk⟩ |ψ⟩

2

TEST SPACE

R C RI CI |φk⟩ |ψ⟩

|φ1⟩ |ψ⟩ |φ1⟩ |φ2⟩ |φ3⟩

⟨A⟩ : H → R(A) ⊂ RI Aw : H⊗H → CI

∑

k

|⟨φk|ψ⟩|2
⟨φk|A|ψ⟩
⟨φk|ψ⟩

= ⟨ψ|A|ψ⟩

⟨φ1|A|ψ⟩
⟨φ1|ψ⟩

|b⟩

⟨φ2|A|ψ⟩
⟨φ2|ψ⟩

⟨φn|A|ψ⟩
⟨φn|ψ⟩

K(α) = ⟨φ|uA(α)|ψ⟩

Kk(α) = ⟨φ|uA(α)|χk⟩⟨χk|ψ⟩

|χ1⟩ |χ2⟩ |χ3⟩ p

cn → ⟨xn|ψ⟩ U(T ) → 1
⟨φ|xn⟩⟨xn|ψ⟩

⟨φ|ψ⟩ =
⟨φ|Ex

n|ψ⟩
⟨φ|ψ⟩

I :=
1

2
lim
α→0

1

|K(α)|2
∂

∂α

(
|K(α)|2 −

∑

k

|Kk(α)|2
)
.



Concluding Remarks

The weak value may be regarded as the average of the ‘classical weak 
values’ with respect to the (conditional) weak quasiprobability 
associated with the given transition processes.  The imaginary part 
describes the degree of interference involved in the processes.

The weak quasiprobability (or the weak value) has a natural position 
in HVT (ontological model) when complexity is allowed.  It admits an 
arbitrary parameter    , which is related to the ratio of mixture 
between the forward and backward processes.

Ak
w =

⟨φ|A|χk⟩
⟨φ|χk⟩

⟨A⟩dBB =

∫
dλA(λ)ρ(λ) ρ(λ) = |ψ(x)|2 λ x

⟨A⟩QM = ⟨ψ|A|ψ⟩

µ(E) = tr(WE) W A =
∑

i

aiE
A
i

µ

(
∑

i

Ei

)
=
∑

i

µ(Ei) {Ei}

Aw =
⟨φ|A|ψ⟩
⟨φ|ψ⟩

µ(E) = tr(WE) = α
⟨φ|E|ψ⟩
⟨φ|ψ⟩ + (1− α)

⟨ψ|E|φ⟩
⟨ψ|φ⟩

A(λ) =
⟨x|A|ψ⟩
⟨x|ψ⟩

λ(A) =
∑

i

aiµ(E
A
i ) = tr(WA) = α

⟨φ|A|ψ⟩
⟨φ|ψ⟩ + (1− α)

⟨ψ|A|φ⟩
⟨ψ|φ⟩

λ(A) = α
⟨φ|U(tf )A(t)U†(ti)|ψ⟩

⟨φ|U(tf )U †(ti)|ψ⟩
+(1−α) ⟨ψ|U(ti)A(t)U†(tf )|φ⟩

⟨φ|U(ti)U †(tf )|ψ⟩

2

The joint quasiprobability, which may be relevant to ‘postselected 
measurement’ in the conditional form, admits a family containing the 
Wigner function (           ) and the Kirkwood function (           ).

TEST SPACE

R C RI CI |φk⟩ |ψ⟩

|φ1⟩ |ψ⟩ |φ1⟩ |φ2⟩ |φ3⟩ α = 0, 1 α = 1/2

⟨A⟩ : H → R(A) ⊂ RI Aw : H⊗H → CI

∑

k

|⟨φk|ψ⟩|2
⟨φk|A|ψ⟩
⟨φk|ψ⟩

= ⟨ψ|A|ψ⟩

⟨φ1|A|ψ⟩
⟨φ1|ψ⟩

|b⟩

⟨φ2|A|ψ⟩
⟨φ2|ψ⟩

⟨φn|A|ψ⟩
⟨φn|ψ⟩

K(α) = ⟨φ|uA(α)|ψ⟩

Kk(α) = ⟨φ|uA(α)|χk⟩⟨χk|ψ⟩

|χ1⟩ |χ2⟩ |χ3⟩ p

cn → ⟨xn|ψ⟩ U(T ) → 1
⟨φ|xn⟩⟨xn|ψ⟩

⟨φ|ψ⟩ =
⟨φ|Ex

n|ψ⟩
⟨φ|ψ⟩

I :=
1

2
lim
α→0

1

|K(α)|2
∂

∂α

(
|K(α)|2 −

∑

k

|Kk(α)|2
)
.

TEST SPACE

R C RI CI |φk⟩ |ψ⟩

|φ1⟩ |ψ⟩ |φ1⟩ |φ2⟩ |φ3⟩ α = 0, 1 α = 1/2

⟨A⟩ : H → R(A) ⊂ RI Aw : H⊗H → CI

∑

k

|⟨φk|ψ⟩|2
⟨φk|A|ψ⟩
⟨φk|ψ⟩

= ⟨ψ|A|ψ⟩

⟨φ1|A|ψ⟩
⟨φ1|ψ⟩

|b⟩

⟨φ2|A|ψ⟩
⟨φ2|ψ⟩

⟨φn|A|ψ⟩
⟨φn|ψ⟩

K(α) = ⟨φ|uA(α)|ψ⟩

Kk(α) = ⟨φ|uA(α)|χk⟩⟨χk|ψ⟩

|χ1⟩ |χ2⟩ |χ3⟩ p

cn → ⟨xn|ψ⟩ U(T ) → 1
⟨φ|xn⟩⟨xn|ψ⟩

⟨φ|ψ⟩ =
⟨φ|Ex

n|ψ⟩
⟨φ|ψ⟩

I :=
1

2
lim
α→0

1

|K(α)|2
∂

∂α

(
|K(α)|2 −

∑

k

|Kk(α)|2
)
.

Thank you!

In all aspects, quasiprobability lies at the heart of the weak value	


and, possibly, at the heart of quantum mechanics.
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