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1. Weak trgjectory and quasiprobability

weak value as a new ‘observable’ of quantum mechanics
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» useful for a deeper understanding of quantum phenomena

» applications for precision measurement



time-symmetric formulation of quantum mechanics

Y. Aharonov, P. G. Bergmann, J. L. Lebowitz (1964)

... the result of the measurement at ¢ has

implications not only for what happens after ,
t but also for what happened in the past ...

» consistent with all the predictions made by the standard description
of QM

» shed new lights on quantum phenomena that were missed before
(such as weak value, state reduction, tunneling etc.)

® may suggest generalizations of QM



Can the weak value offer an ‘intuitive picture’ ?

weak value under dynamical evolution
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time-dependent (dynamical) weak value
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like the expectation value, the dynamical weak value satisfies
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Ehrenfest theorem for the weak value



trajectory in weak value

free particle
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-‘weak trajectory’ -

o

trajectory of particle in
terms of the weak value

coincides with trajectory

up to quadratic potentials by
Ehrenfest theorem



trajectory in weak value -‘weak trajectory’ -

non-free particle
&
P2 i .
9) = |zf)
e Zo(t) £ za(t)
"”'
) = [@3)

t =0 t=T

(Vr|U(T = t)xU(#)|i)  trajectory of particle in
(W |UT)|9:) terms of the weak value

T —

semiclassical study of the trajectories  A.Tanaka, PLA (2002)
A. Matzkin, PRL (2012)



double slit eXPerlment T. Mori and I.T,, Quant. Stud. (2015)
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weak trajectories in complex space

Transition
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triple slit experiment
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triple slit experiment

weak trajectory
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weak trajectories in complex space

Transition
Prob?bility
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multiple slit or general case

preselection
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what we have learned so far:

® it is given by the average over respective ‘classical’ weak
trajectories weighted with ‘weak quasiprobability’

® imaginary part describes the degree of interference (more next)

further example: Lloyd’s mirror

Rex,, I




weak value as a correction to transition probability

. : ’¢> ... postselection transition amplitude
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relative change due to the unitary action (for small s|A| ) Dressel et al, RMP (2014)
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imaginary part relates to interference

Dressel, Jordan, PRA (2012)
transition amplitude through intermediate states T.Mori, T, PTEP (2015)
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equivalent picture
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unitary family of postselections

B(s)) = Ul (s)]9)



ex.) double slit experiment

P generator of translation
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‘which path’ experiment

add spin degrees of freedom to obtain
which path information
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2. Physical value in HVT and quasi probability

expectation value vs weak value

expectation value

<A> :H — R(A) C R ‘one-state’ value

Slem i wid, within the (real) range of spectrum
weak value
 (o|AlYy)y Ay HOIH —C ‘two-state’ value
o (@]1) entire range of complex numbers

... the result of measurement of a spin component of
spin 1/2 particle can turn out to be 100 ...

Y. Aharonov, D. Z. Albert, L. Vaidman (1988)



property of weak value g (| Alr)

o
(analogous to expectation value) <¢‘¢>

|) agrees with the eigenvalue if the preselected (or postselected)
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link between the weak value and the expectation value
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average of the weak values assigned to all possible processes
gives the expectation value



“interpretation” as physical value in HVT (ontological model)
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in general

probability of obtaining @; in measuring observable A
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compare with

ontological model by Harrigan & Spekkens (2010)
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c(A=a; ¥, 9) =

‘weak quasiprobability’

appears naturally in the ontological interpretation of QM,
modulo the state dependence (and complex-valuedness)



Properties M. Ozawa, AIP Conf. Proc. (201 1)
A. Steinberg, Phys. Rev.A (1995)

complex weak quasiprobability
ai = c(A=a;|,¢)  Y,c(A=ailp,¢)=1

reduction to probability
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relation to joint quasiprobability (Kirkwood function)
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3. Postselected measurement and quasi probability

complex probability measure (extending Gleason)
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physical observable

1l —«
s L
AA) = ) ain(BL) = tr(WA)
) | wldle)
(@) (¥]9)

Note: most of the properties of the weak value (and the quasi
probability) mentioned earlier hold even with the parameter o !



family of joint quasiprobabilities ). Leeand LT, in preparation

distribution for two (non-commuting) observables A, B
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marginals
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covariance
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relation to previously known quasiprobability distributions

® Wigner function
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o Kirkwood function
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’

conditional quasiprobability relevant to ‘postselected measurement
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representation in terms of probability
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Concluding Remarks

® The weak value may be regarded as the average of the ‘classical weak
values’ with respect to the (conditional) weak quasiprobability
associated with the given transition processes. The imaginary part
describes the degree of interference involved in the processes.

® The weak quasiprobability (or the weak value) has a natural position
in HVT (ontological model) when complexity is allowed. It admits an
arbitrary parameter &, which is related to the ratio of mixture
between the forward and backward processes.

® The joint quasiprobability, which may be relevant to ‘postselected
measurement’ in the conditional form, admits a family containing the
Wigner function (a = 1/2) and the Kirkwood function (a = 0,1).

In all aspects, quasiprobability lies at the heart of the weak value
and, possibly, at the heart of quantum mechanics.
P 4 d Thank you!
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