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Summary

It is natural that quantum state is expressed by an
negative or complex joint probability distribution.

Experimentally-obtained probabilities are never identified
to the probabilities before a measurement due to the
Interaction to the meter apparatus. Intrinsic probabilities
are converted to positive probabillities by the
measurement interaction.

The results of weak measurement shows the intrinsic
probability before the measurement process.



1. Quantum state tomography
of photon polarization



Quantum state tomography

. Probability
Physics system Measurement distribution
Quantty 4 EEE) Py (a)
Quantum state Ouantity ‘ Dy (D)

( density matrix )
Quantity C ‘ py(€)

Quantum state tomography

EX)

e Quantum information processing
» Electronic state and spin state in molecules, solid, etc.



Quantum information processing

Quantum state: p,

Operation: Unitary transformation

4 _ processing A
pén(a1)a2)a3;a4)a5)'”) ‘ pgut(b1!b2'b3'b4'b5"”)
measurement
\'Dgut(bl'bzrbBrbél-lel"') ‘ pgut(b11b2'b3'b4'b5"")j

pfiln pgut pgut pci[n pgut pgut
HWP _PBS 4 b
5 orled | e & T - Ly 1
PBS c
= oAl ol o 10021 T b2 10y S 0
2 BS| PBS Uz b O
s orldl o -l 1 D= 1) 5 1
° BS Qwp b a
o .
£ oAl o/l 0 )& —H10 2 o
pgg HWP as U45 b5
orl-£ ol , 1V 1)




Density matrix in a two-level system

General representation of Quantum state

Matrix with two bases |0) and |1) in Hilbert space ( pure state )

1Col?  CiC Poo P =1
W)W =( o )= (e ) PeotPu
CoCr  |Ghl 10 ~F11 Po1 = P1o

p

p should be a Hermitian matrix with its trace one.

pPoo and p,, : Probability of [0) and |1)

Ex) Mixed state Superposition state

Probability of |0) :1/2 lY) = 1/v/2(]0) + |1))
Probability of |1) :1/2
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Basis of polarization state

HV basis PM basis LR basis
: 135° ( |[M) state) , 45°(|P) state ) » Left-handed
\(/ellr};csgate ) ; . (|L) state)

Horizontal
( |H) state )

. Right-handed
" (|LR) state)

W) = CylH) + Cy|V)  |Y) = Cp|P) + Cy|M)

Y) = CL|L) + CR|R)
1 1 .
|P) =\/—§(|H> + (V) L) =E(IH> +iV))
1
|M) =i(|H> — V) R) = —=(|H) = i[V}))

V2 V2



Observables of photon polarization

In two-level systems

Two eigenvalues 4,,, =+1 m==+1

Two eigenstates : measurement bases |m)

Observable : A = Y,,,,_ 11 A |m)m|

0 AN 1 0 A
/HV basis Sy = |HXH| — [VNV| = [O _1] = 5, N
o X O 1 A
PM basis Son = |PHP| — [MY M| = [ X 0] = 5,
. A~ 0 —1 A
R basis Sie = ILXLI= IRYRI = [0 F] =3y

\ Pauli matrices /




Measurements of polarization

Measurement of HV basis ( Sy, measurement )

Polarized Beam Splitter (PBS)

Source — — — ) A >[- Single photon detector
| + Ny detections
\ T/ ® H-component
V-component A
%) ? frequency
Py v,

0 :
A N, entries
Single photon detector
Ny, detectrions

-1 +1 SHvV

p(+1) = |cos 8]*> = Ny /N, » 5, = p(+1)  po1
p(—1) = |sin8]2 = Ny /N, Y7l opgy p(-D

Off-diagonal components can be not fixed.



Measurement of polarization

Measurement of PM basis ( $p); measurement )

Single photon detector

k >[-NM detections
R

p(—=1) = Ny /Ny

Source —

N W

N, entries Py (135° direction)
Single photon detector

f >[- Np detections

Polari;er | p(+1) = Np/N,
(45° direction)

x= (lSuly) =pG+D -p-1) WY py=[y ]

M
Source .

Determination of only real parts of off-diagonal



Non-commuting observables

Bl=4AB—-BA+0 of A & B (uncertainty principle

|

A & B non-commuting Never fix precise values
[[A, = >]

Observables of polarization Sy, & Spy

A a1 .a syy = +1(H polarization)
[Suv, Sem| = iS1p - € spy = +1 or —1 ( not fixed )

Trade-off relation
polarizer (H direction)

Sequential measurement of
Polarizer Sy, & Spyy © No Work !!
(P direction)

Light
source




Estimation of density matrix

Density matrix gy, : Never directly obtainable in experiments

Estimation of a single system

A —l(f+ 5 L vh 4 A)_1[1+Z x—iy]
Py =7 X0y +y0y +26;) = x+iy 1-
X = Tr[ﬁlp : 6x] = (Gy) Estimation from averages

T Physical quantity

No directly obtainable

EX) polarization of single photon
z = (Suy) =pH) —p(V) Three unknown parameters

of observables 6. 6y . 6,

_ (& _ In simple case, measurements with 6 bases
x=(S =p(P)—pM ’
( PM) p(P) =p(M) At least, measurements with 4 bases

y =(S.r) =P(L) — P(R)



2. Statistical approach
to quantum mechanics



Notation

Conditional probability p(m|a)

Random variables condition

Probability of m under the condition a

Conditional joint probability — p(m,f | a)

Random variables condition

Probability of ( m, f) under the condition a

Probability of a in the initial state y

p(aly)



Pseudo-probability distribution

Expression of quantum state as joint probability distribution with variables
of non-commuting observables

{Joint probability : p(a,blyp) <4===)  Density matrix : py, ]

Ex) probability distribution p(x,p)

Wigner distribution ( 1932 E.P. Wigner)

1 1

1 (® .
— YA P I —ipx /
Wy (x,p) —an_oo<x+ 5% |p¢|x 5% >e dx

Kirkwood-Dirac distribution ( 1933 J.G. Kirkwood, 1944 P. Dirac )
Ky (x, ) = (x|p){(p|py|x)

Generally, negative and complex number ¢===) Never directly measurable



Kirkwood-Dirac distribution
/" Joint probability distribution on A. B )
p(a,bly) = (bla)a|py|b) [ = (blaXaly)|b) ]
i= adaxal =Y Bl o
: :

Generally, values are complex numbers.

NG J

Open questions of consistency with actual measurement results
( positive probabilities )

Giving correct marginal probabilities

p(@ = ) plablp) = (alpyla) p®) = > pably) = (b|sy|b)
b a

Including a correlation ( commutation relation )

[4.8]=iC (¢)==([4.5]) = 23[(4B)] = 23

Z%Bw(a,blw}‘
a,b



Correspondence to density matrix

b
pl/J Z|a><a|;0¢|b)(b| 2(b|a> |,D¢|b> laX >|

a)(b)
2p¢<ab|¢> s

K-D distribution

The K-D distribution is identified to each component of
a density matrix using |a){b|/{b|a) as a basis.

Mathematically,
K-D distribution) = ( density matrix



Bayes’ theorem

p(a,bly) = p(alb,y) p(bly)

Joint probability Conditional Transition
probability probability

Assuming K-D distribution as a joint probability,

p(a,bly) = p(alb,y) p(b) = (blaXalpXy|b)

[(bl)*

Conditional probability:

(bla){a|yy) Weakvalue
p(alb,y) = b0} initial state : [), final state: (b|.

projection operator : 4 = |aXaq|




How to reconstruct K-D distribution

Use of weak measurement
Final state selection (p|

System |Y) obser\’/able A = |a)al > %
1P
|

Meter A:pllng\; D’\ Conditional probability

p(qly) strength 6 of meter variable
p(qlb,y)

Back-action : negligible EEEEE) Weak value : (4) = (b|<6;)|(1/6)l>|1/))

K-D distribution : p(a, b|y) = (/I)W p(b)

Position and momentum : C. Bamber and J. S. Lundeen, PRL Vol. 112 070405 ( 2014 )
Photon polarization : J. Z. Salvalil, et. al. Nature Photon Vol. 7 316-321 (2013)



Questions

® If the K-D distribution represents a quantum state, it
should be independent in the measurement process.

-> Can we obtain the K-D distribution in the strong measurement ?

® The K-D distribution is just one of mathematical
representations such as pseudo-probability distributions.
( Ex : Winger distribution, Q function, etc.. )

-> Can we get the probability distribution without the help of
guantum theory ( or quantum measurement theory ) ?

Measured '
probabilities

Quantum theory
Quantum measurement theory

Pseudo-probability
Density matrix




3. Sequential measurement
of photon polarization



Alternative approach

a )
Measurements at any measurement strength

Analysis without the help of qguantum theory
\ _J

Probability
distribution

pl/)(a’ b’ coe

Analysis

¢ |

Without the use of I3, g, -

guantum theory
Pexp (a) Pexp (b)

Comparison to each other
Probabilities

as relative frequency

measurement (4, B, -+-)

)

Quantum
measurement theory What is obtained
Quantum theory as probability distributions ?




Sequential measurement

Use of Variable Strength Measurement (VSM)

ﬁg(@) Measurement strength 6 : controllable [/i, E] =iC

A 2N

A measurement B measurement
Quantum state = h
HA
py(a,b) a(8)

A

outcome Mm outcome f
Experimental joint probability p,,,(m, /|6)
a2 )
Pexp(m, £16) = > p(m,f1a,b, 0)py(a,b)
Experimental a.b Error probability  joint probability of
joint probability by meter apparatus initial state

- _/




Sequential measurements of Spy; and Syy

Polarizer (H or V)

Initial state P-component
Py (Spm» Suv) "\
-~

I

J/ ./j\ ‘/\L

strength: 6

6 = 0° No measurement M-component

6 = 22.5° fully projective
( completely separation )

M

e

\\\
A
Measurement

Pexp (Spm> Suv)

D\ Pexp(+1,+1)

pexp(‘l'l; -1 )

= D\

//

pexp(_lx +1 )
pexp(_L —1 )

Pexp(Spm, Spy) depends on the measurement strength 6

py (spm, Spy) Should be independent in the measurement strength 6




Setup for linear polarization

Initial state : |y;) = sin ¢ |H) + cos ¢, |V)

state

preparation path _82
.;I ¢ Mirror Measurement operator
‘ N\ < o A
HWP Fls HWP Mp = —[cos 26 + sin 26 Spy]
(angle 0 ) V2
_ 1 .
My = T [cos 20 — sin 20 SPM]
mm HWP 2
(angle -0 )
BS polarizer
b1 I » D1 pexp("'l; +1)
Mirror b2 pexp(‘l'l; —1)
path a1 HWP
i polarizer
D2
pexp(_l; +1)

pexp(_l; —1 )






Resolution and Back-action

Influence of Sp,; measurement

Measurement resolution &
Capability of separation
between P and M

¢ = 0 no separation
¢ = 1 perfect separation

Inputting P state as initial state
€ = pexp(Plp) - pexp(Mlp)

Probability of M in inputting P
( probability of P in inputting M)

1
Perm 25(1—5)

Error probability by resolution

Measurement back-action 1

Mixing by flipping
between H and V

n = 0 no mixing
n = 1 perfect mixing
Inputting H state as initial state
1—-n= pexp(HlH) - pexp(VlH)

Probability of V in inputting H
( probability of H in inputting V)
n

PHV=2

Error probability by back-action



P(P) - PM)

Evaluation of € and n

Measurement resolution ¢

Initial state : P state

1
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0.6 S N R _
d
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Od A S S 7
| | | |
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(b) 1
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T 04
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0.2

0

back-action 1 —n

Initial state : H state




Measurement uncertainty

1 II | E = VPM Sin 46

—e—exper imental values
uncertainty limit

0.8 e S o

n=1-—Vyy,cos46

Experimental imperfection

. - )  Vyy =99.97 %
T — S

- | | 1 - Ozawa’s error and disturbance

| | /! ; | (independent in initial state )
0.2 i e S . A .

o | .4 | | el =4ppy =2(1 —¢)

T N M5 =4pav =21
0 0.2 0.4 0.6 0.8 1



Analysis ( for linear polarization )

4 1 )
Resolution : ¢ Error probability by resolution : pp,, = = (1—¢)
Back-action : n Error probability by back-action : pyy = g

\_ J
Initial state : py, (spy, Spy) Measured probability : p.., (Spy, Suy)

1+¢ n 1—¢ n
Pexp (Spm»Suv) = 5 (1 - E) Py (Spm» Suv) + T (1 - E) pv,b(_SPM; SHV)
Initial probability Only spy, flip
1+e&\n 1—¢€\n
+ < > > > Py (Spm> —Suv) + < 5 >Ep1,b(_SPM: —Shy)
Only syy flip Both of spy, and sy flip

No use of quantum theory and quantum measurement theory



Experimental joint probabilities

i o Pexp(+1,+1). o Pexp(+1,-1)
05 . O Pexp(=1,+1). x Pexp(=1,-1) S
I g ¢ ' T 2
3 | | |
% | T
0.4 - % e e e B
I g | | o 1
~ s |
503 . A— —
& * | * o ]
< | - S |
® L ! @ ! ! 4
% 02 e e X S -
f s > s o
.
I o i i = ]
0.1 — g e e o e
C | = |
. s s s
= =
0 L = = = =
0 5 10 15 20

Initial state :
cos ¢

|l/}> = [SiIl(P ¢ = 67.5°
Pexp (Spm> Suy)
depending on 6

Including the influence
of Spy; Measurement



Reconstruction of joint probabilities

0.8 L DL L i
o Py © Py (+.-1) ----prediction | Y Suzu_kl, et. al., New Journal
2 PulL+h) o Py -1 -1) : of Physics 14 (2012) 103022
0.6 -———%————i}—@---é—-—-é---é---r@---é---{r"" [Pgb (Spm» Suv) h
* : | | | Independent in 6
S N S || Including no influence of
2 : | | | ‘ the Spp, measurement
o 0.2 I e S | Consistent with K-D
: | | | distribution
I S S S S
o I O O . ] \( vl PM>< PM|P¢| HV)
m@,g@@@@mm One of joint probabilities is
* i % negative !!
_0_ 2 \ L [ L [ Lo L Lo L
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Measurement of complex probability

Measurement of statistical property : projective process
Measurement of dynamical property : unitary process
H. F. Hofmann, New J. Phys. 13 103009 (2011)

A |4,B] =iC

A measurement ~

= B measurement
[12(6)

0:(6) — I
V

outcome Mm outcome f
Experimental joint probability p,,,(m, f|6)

a )
Pexp(m, £16) = > p(m, fla,b,0)py(a,b)

Experimentally a.b Error probability  Intrinsic joint probability
joint probability (complex number) (complex number)

- _/

Quantum state
py(a,b)

oo}




Measurement Process

Projection process

R

1Y¥;)

P

PM axis

~ 1 3
Pr =7 [cos 20 + sin 26 Spy]

1

Q — 5 |cos 20 — sin 26 SPM]/

r Unitary process ﬂ

[Y;)

A

PM axis
. 1

UP:\/_E
1

[COS 20 + isin 26 SPM]

unify

@: \/_E[COS 20 — isinZHfPM]/

_ 1 . . _ 1 . A
[ Mp = ﬁ [cos 20 + e'¥sin 26 SPM] My, = ﬁ[cos 260 — e'? sin 26 SPM] J




Setup for complex probability

_ AN Measurement strength : g

A=830.00nm Gran-Thompson prism 6 = 0° ' N0 measurement
_ ND filter 0 = 22.5° : fully projection
reparation N
prep O Fea for Spy |
N\ full resolution
S N QWP for correlation
NBWP (0 of mmmmmm ©°PM — HWP
17/2) -
HBS HWP(6) Pexp(+1,+1) OF Py (+1,—1)
BS APDs [P, H] [P, V]
D1
S'HV Polarizer (H or V) pexp(_l: +1) or pexp(_L -1)
[M, H] [M, V]




Definition of resolution and back-action

ZSPM:SHV SHVpexp (SPM' SHV)

n= -
(Wi |Suv 1)
Back-action of Sy, measurement
. = ZSPM;SHV SpMPexp (SPM: SHV)
r — A
(Wi Sem|w:)
Resolution of Sp,, measurement
c. =i z:SPM;SHV SPMSHVpexp (SPM; SHV)
. — A A~
(Wil SuvSpmlii)

Resolution of correlation



Calibration of meter system

Input of H-polarization at 8  back-action by Sp,, measurement

n= (pexp(P; H) + pexp(M; H)) - (pexp(P: V) + pexp(Mr V))
Input of P-polarization at &  resolution of $p,, measurement
&r = (pexp(P; H) + pexp(P: V)) - (pexp(M» H) + pexp(Mr V))

Input of L-circular polarization at §  resolution of correlation between
Syy and Spy

&i = (Pexp (P, H) + Dexp(M,V)) — (Pexp (M, H) + Dexp(P,V))

[Error probability (at 8 ) p(xspm, £Suv | Spym, Suv) ]




Evaluation of resolution and back-action

initial : |P) initial @ |L)
o7 7
o € (Ieft scale) I
o g **(“r“Iéh‘f“ﬁéé‘é*lué) ***** é ]
05 e
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0.8 - ]
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02 e
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7 o
I
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Analysis ( general case )

Error probability (at 8 )

~

p(Spm, Suv | Spms Suv) = p (1+n+e —ig)

p(spm, —Suv | Spm, Suy) = 7 (1—-n+e¢ +ig)
p(—Spm, Suv | Spms Suy) = 7 (1+7n—& tig)
\ p(—spm, —Suv | Spmy Snv) = %(1 —n—¢& —ig) /

Pexp (Spm> Suv) = (Spum, Suv|Spm, SHV)pIIJ(SPM;SHV)

Both no flips

+p(Spm, Suv|—Spum, SHV)pl,b(_SPM: Suv)
Only spy, flip

+p(Spms Suv|Spm, —Suv) Py (Spmy —Sav)
Only Syy ﬂ'p

+p(Spm Suv|—Spmy —Suv) Py (—Spm, —SuV)
Both flips




Experimental joint probability

o o © o o | - ~+ Initial state : elliptic
i O i 7
© ; e -3
X i i i ° ] COS—Tr
I x N N % 8
f  x | | ] 3
3 3 3 | . SIN—-TT"e
| x | ] "8 -
o P+ +1) X 9
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o P(+1,-1) x o
- x PC-1,-1) e ,,,,,, '3:1
3 .0 e %
o o Xy
I AN S o S
o ° o s )
g =@ O o Strong
o dependence on 6
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0.5
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0.3
0.2

0.1

Reconstruction of complex probability

Rel[p(spm, Suv)]

06 s T T rT e
1% e o o e o 4 s b %
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015“
.
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x o LD
S0 00 N U T
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Independentin ¢ ) initial joint probability



4. Summary,
Intriguing questions, prospective



Summary

It is natural that quantum state is expressed by an
negative or complex joint probability distribution.

Experimentally-obtained probabilities are never identified
to the probabilities before a measurement due to the
Interaction to the meter apparatus. Intrinsic probabilities
are converted to positive probabillities by the
measurement interaction.

The results of weak measurement shows the intrinsic
probability before the measurement process.



Intriguing questions

Quantum tomography
 [Initial joint probability for any initial state ( including a mixed state )
« Comparison with a conventional tomography

Measurement uncertainty ( Ozawa formalism )
« Detailed analysis of measurement process

Possible extension to high dimension system
« Analysis of back-action process

Physical meaning of negative or complex probability

« Quantum mechanics=probability+dynamics

« Relation to unitary transformation
( H. F. Hofmann, New J. Phys. 13, 103009 (2011) )

« Understanding of quantum mechanics by Quantum ergodicity
( H. F. Hofmann, Phy. Rev. A, 89, 42115 (2014))



Prospective

My private opinion

Quantum-mechanical strange phenomena might be
explained by K-D distribution.

o weak value and weak measurement

* understanding of measurement process
. origin of measurement uncertainty
. application to precise measurement
. connection between quantum and classical pictures

joint probability using entanglement state
. Consistent connection between non-locality and locality
. Reason of violation of Bell inequality

Extension to higher dimensional system
. analysis of back-action process
. feasibility of complex joint probability

The analysis without the use of quantum theory is preferable



