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Summary 

• It is natural that quantum state is expressed by an 

negative or complex joint probability distribution.  

 

• Experimentally-obtained probabilities are never identified 

to the probabilities before a measurement due to the 

interaction to the meter apparatus. Intrinsic probabilities 

are converted to positive probabilities by the 

measurement interaction. 

 

• The results of weak measurement shows the intrinsic 

probability before the measurement process. 



1. Quantum state tomography  

                    of photon polarization  



Quantum state tomography 

Quantum state 

( density matrix ) 

Probability  

   distribution 

𝑝𝜓(𝑎) 

𝑝𝜓(𝑏) 

𝑝𝜓(𝑐) 

Estimation  

Quantum state tomography 

Measurement 

Quantity 𝐴  

Quantity 𝐵  

Quantity 𝐶  

Ex)  

• Quantum information processing 

• Electronic state and spin state in molecules, solid, etc. 

Physics system  



Quantum information processing 
Quantum state:  𝜌𝑞        Operation：Unitary transformation 

𝜌𝑞
𝑖𝑛 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, ⋯  𝜌𝑞

𝑜𝑢𝑡 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, ⋯  
processing 

𝜌𝑞
𝑜𝑢𝑡 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, ⋯  𝑝𝑐

𝑜𝑢𝑡 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, ⋯  

measurement 

𝜌𝑞
𝑖𝑛 𝜌𝑞

𝑜𝑢𝑡 𝑝𝑐
𝑜𝑢𝑡 𝜌𝑞

𝑖𝑛 𝜌𝑞
𝑜𝑢𝑡 𝑝𝑐

𝑜𝑢𝑡 
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Density matrix in a two-level system 

General representation of Quantum state 

𝜌 ≡  𝜓  𝜓 =
𝐶0

2 𝐶1
∗𝐶0

𝐶0
∗𝐶1 𝐶1

2 =
𝜌00 𝜌01

𝜌10 𝜌11
 

𝜌00 + 𝜌11 = 1 

𝜌01
∗ = 𝜌10 

𝝆  should be a Hermitian matrix with its trace one. 

𝜌00 and 𝜌11  : Probability of  0  and  1   

Ex） Mixed state 

Probability of  0  ：1/2  

Probability of  1  ：1/2 

𝜌 𝑚𝑖𝑥 =

1

2
0

0
1

2

 

Superposition state 

 𝜓 = 1 2  0 +  1  

𝜌 𝑠 =

1

2

1

2
1

2

1

2

 

Matrix with two bases  0  and  1  in Hilbert space ( pure state )  



Basis of polarization state 

135° (  𝑀  state ) 

HV basis PM basis LR basis 

 𝜓 = 𝐶𝐻 𝐻 + 𝐶𝑉 𝑉   𝜓 = 𝐶𝑃 𝑃 + 𝐶𝑀 𝑀   𝜓 = 𝐶𝐿 𝐿 + 𝐶𝑅 𝑅  

 𝑃 =
1

2
 𝐻 +  𝑉  

 𝑀 =
1

2
 𝐻 −  𝑉  

 𝐿 =
1

2
 𝐻 + 𝑖 𝑉  

 𝑅 =
1

2
 𝐻 − 𝑖 𝑉  

Vertical 

（  𝑉  state ） 

Horizontal 

（  𝐻  state ） 

45° (  𝑃  state ) Left-handed  

(  𝐿  state ) 

Right-handed  

(  𝐿𝑅  state ) 



Observables of photon polarization 

In two-level systems  

Two eigenvalues 𝐴𝑚 = ±1 

Two eigenstates :  measurement  bases  𝑚  

𝑆 𝐻𝑉 =  𝐻  𝐻 −  𝑉  𝑉 =
1 0
0 −1

= 𝜎 𝑧 

𝑆 𝑃𝑀 =  𝑃  𝑃 −  𝑀  𝑀 =
0 1
1 0

= 𝜎 𝑥 

𝑆 𝐿𝑅 =  𝐿  𝐿 −  𝑅  𝑅 =
0 −𝑖
𝑖 0

= 𝜎 𝑦 

Pauli matrices 

Observable : 𝐴 =  𝐴𝑚 𝑚  𝑚 𝑚=±1  

𝑚 = ±1 

HV basis  

PM basis  

LR basis  



Measurements of polarization 

𝑠𝐻𝑉 +1 -1 

frequency 

𝑁𝐻 
𝑁𝑉 

Polarized Beam Splitter (PBS) 

Single photon detector 

Single photon detector 

H-component 

V-component 

𝜌 𝜓 

Source 
𝑁𝐻 detections 

𝑁𝑉 detectrions 

𝑁0 entries 

𝑝 +1 = cos 𝜃 2 = 𝑁𝐻 𝑁0  

𝑝 −1 = sin 𝜃 2 = 𝑁𝑉 𝑁0  
𝜌 𝜓 =

𝑝 +1 𝜌01

𝜌01
∗ 𝑝 −1

 

𝜃 

Measurement of HV basis ( 𝑆 𝐻𝑉 measurement ) 

Off-diagonal components can be not fixed.  



Measurement of polarization 

Measurement of PM basis ( 𝑆 𝑃𝑀 measurement ) 

Source 

𝜌 𝜓 𝑁0 entries 

Polarizer 

(135° direction) 

Single photon detector 

𝑁𝑀 detections 

Source 

Single photon detector 

𝑥 ≡ 𝜓 𝑆 𝑃𝑀 𝜓 = 𝑝 +1 − 𝑝(−1) 𝜌 𝜓 =
𝜌00 𝑥
𝑥 𝜌11

 

𝑝 −1 = 𝑁𝑀 𝑁0  

𝑝 +1 = 𝑁𝑃 𝑁0  Polarizer 

(45° direction) 

𝑁𝑃 detections 

Determination of only real parts of off-diagonal 



Non-commuting observables 

𝐴  & 𝐵  non-commuting 

𝐴 , 𝐵 = 𝐴 𝐵 − 𝐵 𝐴 ≠ 0 

Never fix precise values  

of 𝐴  & 𝐵  (uncertainty principle) 

Observables of polarization 𝑆 𝐻𝑉 & 𝑆 𝑃𝑀 

𝑆 𝐻𝑉, 𝑆 𝑃𝑀 = 𝑖𝑆 𝐿𝑅 
𝑠𝐻𝑉 = +1（H polarization） 

𝑠𝑃𝑀 = +1 or −1 ( not fixed ) 

Light  

source 

𝜌 𝜓 

polarizer（H direction） 

Polarizer 

（P direction） 

Sequential measurement  of  

𝑆 𝐻𝑉 & 𝑆 𝑃𝑀  :  No Work !! 

Trade-off relation 



Estimation of density matrix 

Density matrix 𝜌 𝜓 : Never directly obtainable in experiments 

Estimation of a single system 

𝜌 𝜓 =
1

2
𝐼 + 𝑥𝜎 𝑥 + 𝑦𝜎 𝑦 + 𝑧𝜎 𝑧 =

1

2

1 + 𝑧 𝑥 − 𝑖𝑦
𝑥 + 𝑖𝑦 1 − 𝑧

 

𝑥 = 𝑇𝑟 𝜌 𝜓 ∙ 𝜎 𝑥 = 𝜎 𝑥  Estimation from averages  

             of observables 𝜎 𝑥、𝜎 𝑦、𝜎 𝑧 

No directly obtainable 

Physical quantity 

𝑧 = 𝑆 𝐻𝑉 = 𝑝 𝐻 − 𝑝(𝑉) 

𝑥 = 𝑆 𝑃𝑀 = 𝑝 𝑃 − 𝑝(𝑀) 

𝑦 = 𝑆 𝐿𝑅 = 𝑃 𝐿 − 𝑃(𝑅) 

Ex)  polarization of single photon 

Three unknown parameters 

In simple case, measurements with 6 bases 

At least, measurements with 4 bases  



2. Statistical approach  

                   to quantum mechanics 



Notation 

Conditional probability 𝑝  𝑚  𝑎  

Random variables condition 

Probability of m under the condition a  

Conditional joint probability 𝑝  𝑚, 𝑓  𝑎  

Random variables condition 

Probability of ( m, f ) under the condition a  

𝑝  𝑎  𝜓  

Probability of a in the initial state 𝜓 



Pseudo-probability distribution 

Expression of quantum state as joint probability distribution with variables 

of non-commuting observables 

Joint probability : 𝑝 𝑎, 𝑏 𝜓   Density matrix : 𝜌 𝜓 

Ex)  probability distribution  𝑝 𝑥, 𝑝   

Wigner distribution ( 1932    E.P. Wigner )  

𝑊𝜓 𝑥, 𝑝 =
1

2𝜋
 𝑥 +

1

2
𝑥′ 𝜌 𝜓 𝑥 −

1

2
𝑥′ 𝑒−𝑖𝑝𝑥′

𝑑𝑥′
∞

−∞

 

Kirkwood-Dirac distribution ( 1933   J.G. Kirkwood, 1944  P. Dirac )  

𝐾𝜓 𝑥, 𝑝 = 𝑥 𝑝 𝑝 𝜌 𝜓 𝑥  

Generally, negative and complex number  Never directly measurable 



Kirkwood-Dirac distribution 

𝑝 𝑎, 𝑏 𝜓 = 𝑏 𝑎 𝑎 𝜌 𝜓 𝑏        =  𝑏 𝑎 𝑎 𝜓 𝜓 𝑏      

Joint probability distribution on 𝐴 、𝐵  

Generally, values are complex numbers. 

Open questions of consistency with actual measurement results  

                                                      ( positive probabilities ) 

Giving correct marginal probabilities 

𝐴 =  𝐴𝑎 𝑎  𝑎 

𝑎

 𝐵 =  𝐵𝑏 𝑏  𝑏 

𝑏

 

𝑝 𝑎 =  𝑝 𝑎, 𝑏 𝜓 = 𝑎 𝜌 𝜓 𝑎

𝑏

 𝑝 𝑏 =  𝑝 𝑎, 𝑏 𝜓 = 𝑏 𝜌 𝜓 𝑏

𝑎

 

Including a correlation ( commutation relation ) 

𝐴 , 𝐵 = 𝑖𝐶  𝐶 =
1

𝑖
𝐴 , 𝐵 = 2ℑ 𝐴 𝐵 = 2ℑ  𝐴𝑎𝐵𝑏𝑝 𝑎, 𝑏 𝜓

𝑎,𝑏

 

pure state 



Correspondence to density matrix 

𝜌 𝜓 =   𝑎  𝑎 𝜌 𝜓 𝑏  𝑏 

𝑎,𝑏

=  𝑏 𝑎 𝑎 𝜌 𝜓 𝑏
 𝑎  𝑏 

𝑏 𝑎
𝑎,𝑏

 

The K-D distribution is identified to each component of 

a density matrix using  𝑎  𝑏 𝑏 𝑎  as a basis.  

Mathematically,  

=  𝑝𝜓 𝑎, 𝑏 𝜓
 𝑎  𝑏 

𝑏 𝑎
𝑎,𝑏

 

K-D distribution 

K-D distribution density matrix = 



Bayes’ theorem 

Joint probability  

𝑝 𝑎, 𝑏 𝜓 = 𝑝 𝑎 𝑏, 𝜓  𝑝 𝑏 𝜓  

𝑝 𝑎, 𝑏 𝜓 = 𝑝 𝑎 𝑏, 𝜓  𝑝 𝑏 = 𝑏 𝑎 𝑎 𝜓 𝜓 𝑏  

Conditional  

       probability 
Transition  

     probability 

Assuming K-D distribution as a joint probability,  

𝑏 𝜓 2 

𝑝 𝑎 𝑏, 𝜓 =
𝑏 𝑎 𝑎 𝜓

𝑏 𝜓
 

Conditional probability: 

Weak value  

initial state :  𝜓 , final state:  𝑏 、 

projection operator : 𝐴 =  𝑎  𝑎   



How to reconstruct K-D distribution 

 𝜓  

 𝑏  

𝑝 𝑞 𝑏, 𝜓  

Coupling  

strength 𝜃 𝑝 𝑞 𝜓  

Conditional probability 

of meter variable 
Meter  

 𝑝  
System  

observable 𝐴 =  𝑎  𝑎  

Final state selection 

Use of weak measurement 

Back-action : negligible Weak value : 

𝑝 𝑎, 𝑏 𝜓 = 𝐴 
𝑤

 𝑝 𝑏  

𝐴 
𝑤

=
𝑏 𝑎  𝑎 𝜓

𝑏 𝜓
 

K-D distribution :  

Position and momentum : C. Bamber and J. S. Lundeen, PRL Vol. 112 070405 ( 2014 ) 

Photon polarization : J. Z. Salvail, et. al. Nature Photon Vol. 7 316-321 (2013 ) 



Questions 
  If the K-D distribution represents a quantum state, it 

should be independent in the measurement process. 

 

 

 

  The K-D distribution is just one of mathematical 

representations such as pseudo-probability distributions. 

       ( Ex : Winger distribution, Q function, etc.. ) 

Measured  

probabilities 
Pseudo-probability 

Density matrix 

Quantum theory 

Quantum measurement theory 

->  Can we obtain the K-D distribution in the strong measurement ? 

->  Can we get the probability distribution without the help of 

quantum theory ( or quantum measurement theory ) ? 



3. Sequential measurement  

                     of photon polarization 



Alternative approach 

Probability 

distribution   

𝜌𝜓 𝑎, 𝑏, ⋯  

measurement（𝐴 , 𝐵 , ⋯） 

Analysis without the help of quantum theory 

Analysis  

Comparison to each other 

Quantum  

   measurement theory 

Quantum theory 

𝑝𝑒𝑥𝑝 𝑎  𝑝𝑒𝑥𝑝 𝑏  

Probabilities  

    as relative frequency 

Π 𝐴 , Π 𝐵 , ⋯ 

Measurements at any measurement strength 

Without the use of  

quantum theory 

What is obtained  

    as probability distributions ? 



Sequential measurement  

Quantum state  

𝜌𝜓 𝑎, 𝑏  

𝐴   measurement 

outcome 𝑚 outcome 𝑓 

Use of Variable Strength Measurement (VSM) 

Measurement strength 𝜃 : controllable  

Experimental joint probability 𝑝𝑒𝑥𝑝 𝑚, 𝑓 𝜃  

Π 𝐵  

Π 𝐴 (𝜃) 

Π 𝐴 (𝜃) 

𝐴 , 𝐵 = 𝑖𝐶   

𝑝𝑒𝑥𝑝 𝑚, 𝑓 𝜃 =  𝑝 𝑚, 𝑓 𝑎, 𝑏, 𝜃 𝜌𝜓 𝑎, 𝑏 

𝑎.𝑏

 

Error probability  

by meter apparatus 

joint probability of 

initial state 

Experimental  

joint probability 

𝐵   measurement 



Sequential measurements of 𝑆 𝑃𝑀 and 𝑆 𝐻𝑉 

Measurement  

       strength：𝜃 

Initial state 

Polarizer ( H or V ) 

𝜌𝜓 𝑠𝑃𝑀 , 𝑠𝐻𝑉  

𝑝𝑒𝑥𝑝 𝑠𝑃𝑀 , 𝑠𝐻𝑉  

P-component 𝑝𝑒𝑥𝑝 +1, +1  

𝑝𝑒𝑥𝑝 +1, −1  

𝑝𝑒𝑥𝑝 −1, +1  

𝑝𝑒𝑥𝑝 −1, −1  

 𝑝𝑒𝑥𝑝 𝑠𝑃𝑀 , 𝑠𝐻𝑉  depends on the measurement strength 𝜃  

𝜌𝜓 𝑠𝑃𝑀 , 𝑠𝐻𝑉  should be independent in the measurement strength 𝜃  

𝜃 = 0° No measurement  

𝜃 = 22.5° fully projective  

                 ( completely separation ) 

M-component 



Setup for linear polarization  

𝑀 𝑃 =
1

2
cos 2𝜃 + sin 2𝜃 𝑆 𝑃𝑀  

𝑀 𝑀 =
1

2
cos 2𝜃 − sin 2𝜃 𝑆 𝑃𝑀  

Initial state :  𝜓𝑖 = sin 𝜙1 𝐻 + cos 𝜙2 𝑉  

𝑝𝑒𝑥𝑝 +1, +1  

𝑝𝑒𝑥𝑝 +1, −1  

𝑝𝑒𝑥𝑝 −1, +1  

𝑝𝑒𝑥𝑝 −1, −1  

Measurement operator 





Resolution and Back-action 

Measurement resolution 𝜀  Measurement back-action 𝜂 

𝜀 = 𝑝𝑒𝑥𝑝 𝑃 𝑃 − 𝑝𝑒𝑥𝑝 𝑀 𝑃  

Inputting P state as initial state 

Probability of M in inputting P 

( probability of P in inputting M ) 

𝑝𝑃𝑀 =
1

2
1 − 𝜀  

Influence of 𝑆 𝑃𝑀 measurement 

Mixing by flipping  

             between H and V 

𝜂 = 0 no mixing 

𝜂 = 1 perfect mixing 

1 − 𝜂 = 𝑝𝑒𝑥𝑝 𝐻 𝐻 − 𝑝𝑒𝑥𝑝 𝑉 𝐻  

Inputting H state as initial state 

Probability of V in inputting H 

( probability of H in inputting V ) 

𝑝𝐻𝑉 =
𝜂

2
 

Error probability by resolution Error probability by back-action 

Capability of separation  

                 between P and M 

𝜀 = 0 no separation 

𝜀 = 1 perfect separation 



Evaluation of 𝜀 and 𝜂 

Initial state : P state 

Measurement resolution 𝜀 back-action 1 − 𝜂 

Initial state : H state 



Measurement uncertainty 

𝜀 = 𝑉𝑃𝑀 sin 4𝜃 

𝜂 = 1 − 𝑉𝐻𝑉 cos 4𝜃 

Experimental imperfection 

𝑉𝑃𝑀 = 85.3 % 

𝑉𝐻𝑉 = 99.97 % 

Ozawa’s error and disturbance 

( independent in initial state ) 

𝜀𝑜
2 = 4𝑝𝑃𝑀 = 2 1 − 𝜀  

𝜂𝑜
2 = 4𝑝𝐻𝑉 = 2𝜂 



Analysis ( for linear polarization ) 

Resolution : 𝜀 Error probability by resolution :  

Back-action : 𝜂 Error probability by back-action : 

𝑝𝑃𝑀 =
1

2
1 − 𝜀  

𝑝𝐻𝑉 =
𝜂

2
 

Initial state : 𝜌𝜓 𝑠𝑃𝑀 , 𝑠𝐻𝑉  Measured probability : 𝑝𝑒𝑥𝑝 𝑠𝑃𝑀 , 𝑠𝐻𝑉  

𝑝𝑒𝑥𝑝 𝑠𝑃𝑀 , 𝑠𝐻𝑉 =
1 + 𝜀

2
1 −

𝜂

2
𝜌𝜓 𝑠𝑃𝑀 , 𝑠𝐻𝑉 +

1 − 𝜀

2
1 −

𝜂

2
𝜌𝜓 −𝑠𝑃𝑀 , 𝑠𝐻𝑉  

+
1 + 𝜀

2

𝜂

2
𝜌𝜓 𝑠𝑃𝑀 , −𝑠𝐻𝑉 +

1 − 𝜀

2

𝜂

2
𝜌𝜓 −𝑠𝑃𝑀 , −𝑠𝐻𝑉  

Initial probability Only 𝑠𝑃𝑀 flip 

Only 𝑠𝐻𝑉 flip  Both of 𝑠𝑃𝑀 and 𝑠𝐻𝑉 flip 

No use of quantum theory and quantum measurement theory 



Experimental joint probabilities 

Initial state : 

  𝜓 =
cos 𝜙
sin 𝜙

 𝜙 = 67.5° 

𝑝𝑒𝑥𝑝 𝑠𝑃𝑀 , 𝑠𝐻𝑉   

depending on  𝜃 

Including the influence 

of 𝑆 𝑃𝑀 measurement 



Reconstruction of joint probabilities 

𝑝𝜓 𝑠𝑃𝑀 , 𝑠𝐻𝑉   

Independent in 𝜃  

Consistent with K-D 

distribution 

𝑠𝐻𝑉 𝑠𝑃𝑀 𝑠𝑃𝑀 𝜌𝜓 𝑠𝐻𝑉  

One of joint probabilities is 

negative !! 

Y. Suzuki, et. al., New Journal 

of Physics 14 (2012) 103022 

Including no influence of 

the 𝑆 𝑃𝑀 measurement 



Measurement of complex probability 

𝑝𝑒𝑥𝑝 𝑚, 𝑓 𝜃 =  𝑝 𝑚, 𝑓 𝑎, 𝑏, 𝜃 𝜌𝜓 𝑎, 𝑏 

𝑎.𝑏

 

Error probability 

(complex number) 

Intrinsic joint probability 

(complex number) 
Experimentally 

joint probability  

H. F. Hofmann,  New J. Phys. 13 103009 (2011) 

Quantum state  

𝜌𝜓 𝑎, 𝑏  

𝐴   measurement 

outcome 𝑚 outcome 𝑓 
Experimental joint probability 𝑝𝑒𝑥𝑝 𝑚, 𝑓 𝜃  

Π 𝐵  
Π 𝐴 (𝜃) 

𝐴 , 𝐵 = 𝑖𝐶   

𝐵   measurement 

𝑈 𝐴 𝜃  

Measurement of statistical property : projective process 

Measurement of dynamical property : unitary process 



Measurement process 

Unitary process 

PM axis PM axis 

 𝜓𝑖   𝜓𝑖  

𝑃 𝑃 =
1

2
cos 2𝜃 + sin 2𝜃 𝑆 𝑃𝑀  

𝑃 𝑀 =
1

2
cos 2𝜃 − sin 2𝜃 𝑆 𝑃𝑀  

𝑈 𝑃 =
1

2
cos 2𝜃 + 𝑖 sin 2𝜃 𝑆 𝑃𝑀  

𝑈 𝑀 =
1

2
cos 2𝜃 − 𝑖 sin 2𝜃 𝑆 𝑃𝑀  

𝑀 𝑃 =
1

2
cos 2𝜃 + 𝑒𝑖𝜑sin 2𝜃 𝑆 𝑃𝑀  𝑀 𝑀 =

1

2
cos 2𝜃 − 𝑒𝑖𝜑 sin 2𝜃 𝑆 𝑃𝑀  

Projection process 

unify 



Setup for complex probability 

HBS 

HWP 

Gran-Thompson prism 

CW TiS laser 

BS 

D1 

QWP 

ND filter 

HWP(θ) 

Polarizer (H or V) 

𝑓 = 900 

λ=830.00nm 

fiber 

coupling 

D2  

D3 

D2 

D3 

APDs 

λ/8WP (0 or 

π/2) 

D1 

preparation 

𝑆 𝑃𝑀 

𝑆 𝐻𝑉 

[ P,  H ] 
𝑝𝑒𝑥𝑝 +1, +1  or 𝑝𝑒𝑥𝑝 +1, −1   

[ P,  V ] 

𝑝𝑒𝑥𝑝 −1, +1  or 𝑝𝑒𝑥𝑝 −1, −1   

[ M,  H ] [ M,  V ] 

Measurement strength :  q 

𝜃 = 0° : no measurement 

𝜃 = 22.5° : fully projection 

                  for 𝑆 𝑃𝑀 

                  full resolution 

                  for correlation  



𝜀𝑟 ≡
 𝑠𝑃𝑀𝑝𝑒𝑥𝑝 𝑠𝑃𝑀, 𝑠𝐻𝑉𝑠𝑃𝑀,𝑠𝐻𝑉

𝜓𝑖 𝑆 𝑃𝑀 𝜓𝑖

 

𝜂 ≡
 𝑠𝐻𝑉𝑝𝑒𝑥𝑝 𝑠𝑃𝑀, 𝑠𝐻𝑉𝑠𝑃𝑀 ,𝑠𝐻𝑉

𝜓𝑖 𝑆 𝐻𝑉 𝜓𝑖

 

Back-action of 𝑆 𝑃𝑀 measurement 

𝜀𝑖 ≡ 𝑖
 𝑠𝑃𝑀𝑠𝐻𝑉𝑝𝑒𝑥𝑝 𝑠𝑃𝑀, 𝑠𝐻𝑉𝑠𝑃𝑀,𝑠𝐻𝑉

𝜓𝑖 𝑆 𝐻𝑉𝑆 𝑃𝑀 𝜓𝑖

 

Definition of resolution and back-action 

Resolution of 𝑆 𝑃𝑀 measurement 

Resolution of correlation 



Calibration of meter system 

𝜀𝑟 = 𝑝𝑒𝑥𝑝 𝑃, 𝐻 + 𝑝𝑒𝑥𝑝 𝑃, 𝑉 − 𝑝𝑒𝑥𝑝 𝑀, 𝐻 + 𝑝𝑒𝑥𝑝 𝑀, 𝑉  

𝜀𝑖 = 𝑝𝑒𝑥𝑝 𝑃, 𝐻 + 𝑝𝑒𝑥𝑝 𝑀, 𝑉 − 𝑝𝑒𝑥𝑝 𝑀, 𝐻 + 𝑝𝑒𝑥𝑝 𝑃, 𝑉  

𝜂 = 𝑝𝑒𝑥𝑝 𝑃, 𝐻 + 𝑝𝑒𝑥𝑝 𝑀, 𝐻 − 𝑝𝑒𝑥𝑝 𝑃, 𝑉 + 𝑝𝑒𝑥𝑝 𝑀, 𝑉  

back-action by 𝑆 𝑃𝑀 measurement Input of H-polarization at 𝜃 

resolution of 𝑆 𝑃𝑀 measurement Input of P-polarization at 𝜃 

Input of L-circular polarization at 𝜃 resolution of correlation between 

𝑆 𝐻𝑉 and 𝑆 𝑃𝑀 

Error probability ( at 𝜃 )  𝑝  ±𝑠𝑃𝑀, ±𝑠𝐻𝑉  𝑠𝑃𝑀, 𝑠𝐻𝑉  



Evaluation of resolution and back-action 

initial :  𝑃〉 initial :  𝐿〉 initial :  𝐻〉 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 -0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0
0 5 10 15 20

ε
r
(left scale)

ε
i
(right scale)

θ[deg]

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

η

θ[deg]



Analysis ( general case ) 

𝑝𝑒𝑥𝑝 𝑠𝑃𝑀, 𝑠𝐻𝑉 = 𝑝 𝑠𝑃𝑀, 𝑠𝐻𝑉 𝑠𝑃𝑀 , 𝑠𝐻𝑉 𝜌𝜓 𝑠𝑃𝑀, 𝑠𝐻𝑉  

+𝑝 𝑠𝑃𝑀, 𝑠𝐻𝑉 −𝑠𝑃𝑀, 𝑠𝐻𝑉 𝜌𝜓 −𝑠𝑃𝑀, 𝑠𝐻𝑉  

+𝑝 𝑠𝑃𝑀, 𝑠𝐻𝑉 𝑠𝑃𝑀, −𝑠𝐻𝑉 𝜌𝜓 𝑠𝑃𝑀, −𝑠𝐻𝑉  

+𝑝 𝑠𝑃𝑀 , 𝑠𝐻𝑉 −𝑠𝑃𝑀, −𝑠𝐻𝑉 𝜌𝜓 −𝑠𝑃𝑀, −𝑠𝐻𝑉  

Both no flips  

Only 𝑠𝑃𝑀 flip 

Error probability ( at 𝜃 ) 

𝑝  𝑠𝑃𝑀, 𝑠𝐻𝑉   𝑠𝑃𝑀, 𝑠𝐻𝑉 =
1

4
1 + 𝜂 + 𝜀𝑟 − 𝑖𝜀𝑖   

Only 𝑠𝐻𝑉 flip 

Both flips  

𝑝  −𝑠𝑃𝑀, 𝑠𝐻𝑉   𝑠𝑃𝑀, 𝑠𝐻𝑉 =
1

4
1 + 𝜂 − 𝜀𝑟 + 𝑖𝜀𝑖   

𝑝  𝑠𝑃𝑀, −𝑠𝐻𝑉   𝑠𝑃𝑀, 𝑠𝐻𝑉 =
1

4
1 − 𝜂 + 𝜀𝑟 + 𝑖𝜀𝑖   

𝑝  −𝑠𝑃𝑀, −𝑠𝐻𝑉   𝑠𝑃𝑀, 𝑠𝐻𝑉 =
1

4
1 − 𝜂 − 𝜀𝑟 − 𝑖𝜀𝑖   



Experimental joint probability 
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Reconstruction of complex probability 

𝑅𝑒[𝜌(𝑠𝑃𝑀, 𝑠𝐻𝑉)] 𝐼𝑚[𝜌(𝑠𝑃𝑀, 𝑠𝐻𝑉)] 

Independent in 𝜃            initial joint probability 

Ideal values of K-D distribution 



4. Summary,  

          intriguing questions, prospective  



Summary 

• It is natural that quantum state is expressed by an 

negative or complex joint probability distribution.  

 

• Experimentally-obtained probabilities are never identified 

to the probabilities before a measurement due to the 

interaction to the meter apparatus. Intrinsic probabilities 

are converted to positive probabilities by the 

measurement interaction. 

 

• The results of weak measurement shows the intrinsic 

probability before the measurement process. 



Intriguing questions 

• Quantum tomography 

• Initial joint probability for any initial state ( including a mixed state ) 

• Comparison with a conventional tomography 

 

• Measurement uncertainty ( Ozawa formalism ) 

• Detailed analysis of measurement process 

                        

• Possible extension to high dimension system 

• Analysis of back-action process 

 

• Physical meaning of negative or complex probability 

• Quantum mechanics＝probability＋dynamics 

• Relation to unitary transformation 

   （ H. F. Hofmann, New J. Phys. 13, 103009 (2011)  ) 

• Understanding of quantum mechanics by Quantum ergodicity  

   （ H. F. Hofmann,  Phy. Rev. A, 89, 42115 (2014)) 



t  

Prospective 

Quantum-mechanical strange phenomena might be 

explained by K-D distribution.  

The analysis without the use of quantum theory is preferable  

•  joint probability using entanglement state 
•  Consistent connection between non-locality and locality 

•  Reason of violation of Bell inequality 

•  Extension to higher dimensional system 
•  analysis of back-action process 

•  feasibility of complex joint probability 

•  weak value and weak measurement 

•  understanding of measurement process 
•  origin of measurement uncertainty 

•  application to precise measurement 

•  connection between quantum and classical pictures 

My private opinion 


