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Example: adiabatic response of spin S to the classical
magnetic field B

Suppose S is initially aligned to B. As the direction of B is changed
gently, S follows the direction of B, according to the adiabatic theorem.
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A quasi-static adiabatic cycle in B-space

The spin comes back to the original direction after the completion of any
adiabatic cycle in B-space (i.e., the absence of exotic quantum holonomy).
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Any exotic adiabatic cycle flips the spin?
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Exotic quantum holonomy

The change induced such an exotic cycles is called
exotic quantum holonomy (a.k.a. Cheon’s
eigenspace anholonomy).

The term holonomy is derived from the phase
holonomy (a.k.a. geometric phase, or, Berry phase,
or, the molecular Aharonov-Bohm effect).
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Aim

1. Provide an outline of the exotic quantum holonomy
2. Explain a topological formulation of the exotic quantum holonomy

Ref. AT and T. Cheon, arXiv:1402.1634 (Phys. Lett. A, 379 (2015) p.1693)
and references therein.
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The first example
T. Cheon, PLA 248 (1998).

Eigenenergies of a particle in a 1-dim. box under a generalized point
potential, which has two parameters α and β.
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The minimal example — in a quantum kicked spin-1
2

AT and M. Miyamoto, PRL 98 (2007).
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The spin is under periodic pulses whose strength is λ:
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Floquet operator of the kicked spin model
The Floquet operator, which describes the time evolution during a period,
of the kicked spin is

U(λ) = U0e
−iλ|v⟩⟨v|,

where |v⟩ is a normalized vector, and U0 describes the unitary time
evolution of unperturbed system (Combescure, JSP 59 (1990); Milek and
Seba, PRA 42, 1990).
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The eigenspace anholonomy occurs for a generic choice of U0 and |v⟩.
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Multi-level quantum maps
M. Miyamoto and AT, PRA 76 (2007).
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Quasienergy anholonomy in a family of quantum maps under a rank-1
perturbation U(λ) = U0e

−iλ|v⟩⟨v|.
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Two Bose particles

N. Yonezawa, AT and T. Cheon, PRA 87, (2013).
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Parametric evolution of eigenenergies of the two Bose particles in a ring
(two-body Lieb-Liniger model), with respect to the coupling strength g.
The cycle g = 0 → ∞/−∞ → 0 induce the exotic quantum holonomy.
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Lieb-Liniger model (many Bose particles)

N. Yonezawa, AT and T. Cheon, PRA 87, (2013).
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Three- (left) and four- (right) body Lieb-Liniger models.

The cycle g = 0 → ∞/−∞ → 0 can be realized experimentally using
confinement induced resonance (Olshanii, PRL 81 (1998), Haller et al.,
Science 325 (2009)).
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In quantum graphs

T. Cheon, AT and O. Turek, Acta Polytech. 53 (2013).
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Other examples

▶ Quantum graphs/Generalized contact potentials (I. Tsutsui, T. Fülop
and T. Cheon 2000; I. Tsutsui, T. Fülop and T. Cheon 2001; S. Ohya,
Ann. Phys. 331 (2013); S. Ohya, Ann. Phys. 351 (2014))

▶ Non-Abelian extension (T. Cheon and AT 2009)
▶ Nonadiabatic example in time-dependent Aharonov-Bohm ring (AT

and T. Cheon 2010)
▶ Accelerating adiabatic quantum computation

(AT and K. Nemoto 2010)
▶ Hierarchical many-qubit systems (AT, S. W. Kim and T. Cheon 2011;

AT, T. Cheon and S. W. Kim 2012)
▶ Autonomous Hamiltonians

(T. Cheon, AT and S. W. Kim, 2009)
▶ Another good example?



Outline the exotic quantum holonomy 17 / 38

Theoretical works

▶ Generalized Fujikawa formalism (T. Cheon and AT 2009; AT and
T. Cheon 2009)
. . . the eigenspace anholonomy and the off-diagonal geometric phase
factors (Manini and Pistolesi, PRL 85 (2000)) are entangled

▶ Exotic quantum holonomy as an encirclement of non-Hermitian
degeneracy points by Hermitian Hamiltonian/unitary Floquet
operators. (S. W. Kim, T. Cheon and AT 2010; AT, N. Yonezawa and
T. Cheon 2013; AT, S. W. Kim and T. Cheon 2014)
. . . requires an analytic continuation of parameters

▶ Abelian gerbes in adiabatic Floquet theory (Viennot, JPA 42 (2009))
. . . applicable only to periodically driven systems

▶ Another good theory?
. . . the main subject of the next section
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What is missing in theory — lifting structure

C: a path

C̃: a lift of C

▶ The adiabatic time evolution along C induces C̃ (cf. Simon 1983).
▶ The parameterization of path by quantum dynamical variable

completes a geometrical picture, and offers a nonadiabatic extension
(cf. Aharonov and Anandan 1987).
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What is available from the lifting structure

The lift C̃ connects f with ϕC(f), for a given a cycle (closed path) C.

f

φC(f)

C

C̃

▶ How C determines ϕC?

cf. As for the phase holonomy, ϕC is equivalent to the geometric phase
factor, and is an element of the holonomy group (Simon 1983).
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Problem 1: Where to lift a path C?

C

C̃

B

|ψ0〉
|ψ(B)〉

cf. As for the geometric phase, the
lift is a trajectory of state vector,
which obeys the adiabatic
Schrödinger equation.



A topological formulation 22 / 38

Changes in eigenobjects by cycles

Vectors

|0〉 eiθ0 |0〉

|1〉 eiθ1 |1〉

Cnormal

Cexotic

Projectors

|0〉〈0| |0〉〈0|

|1〉〈1| |1〉〈1|

Ordered
projectors

(|0〉〈0|, |1〉〈1|, . . .) (|0〉〈0|, |1〉〈1|, . . .)

(|1〉〈1|, |0〉〈0|, . . .) (|1〉〈1|, |0〉〈0|, . . .)
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An ordered set of mutually orthogonal projectors
Let Pn denote the n-th eigenprojector for a given value of the adiabatic
parameter, say λ0. We define an ordered set of mutually orthogonal
projectors as

p≡ (P0, P1, . . .) .
The value of p is “quantized”, since the order of Pn is arbitrary for λ0.

p =
(
P̂0, P̂1, . . .

)p′ =
(
P̂1, P̂0, . . .

)

C
λ0

λ

Hence p-space can be regarded as a fiber with a discrete structure group
(cf. as for the geometric phase, continuous in general).
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Lifting a cycle C to p-space
The lift C̃ connects

p= (P0, P1, . . .)

with ϕC(p), for example,

ϕC(p) = (P1, P0, . . .)

i.e., ϕC describes the permutation of eigenspaces induced by the adiabatic
time evolution along C.

p

φC(p)

C
λ0

λ

C̃
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How C determines ϕC? — homotopy classification of C
The theory of covering map (homotopy lifting property) tells us

ϕC = ϕC′ if C and C ′ are homotopic.

Hence we denote ϕ[C] instead of ϕC , where [C] is the class of cycles that
are homotopic to C.

p

φC(p)

Cλ0 C ′

C̃C̃

The set of all possible [C] in M is the first fundamental group π1(M),
which plays the central role to understand ϕ[C]’s.
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Example: Kicked spin-1
2

A time-periodic kick is applied to a spin-1
2 under a static magnetic field B:

H(t) ≡ 1
2
B ·σ+λ

1−σz

2

∞∑
m=−∞

δ(t−m),

whose Floquet operator is

U ≡ e−iλ 1−σz
2 e− i

2B·σ.

We choose B = (Bx,By,0) and λ= tan−1(By/Bx),
which ensures the single-valuedness of U .

From the parameter space M (a part of B-plane),
the degenerate point O is excluded.

Bx

By

O
λ
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Kicked spin-1
2 : parametric evolution of eigenprojector

Let |n⟩ be the n-th eigenvector of U , i.e., U |n⟩ = zn|n⟩ (n= 0,1).

Eigenprojectors can be specified by a
normalized “Bloch vector” a(= ⟨0|σ|0⟩) as

|0⟩⟨0| = P (a), |1⟩⟨1| = P (−a),

where
P (a) = 1+σ ·a

2
.

Bx

By

O

C

π a0

a is multiple-valued due to the
eigenspace anholonomy.
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Kicked spin-1
2 : an analysis of anholonomy

As for two level systems, the ordered projector
p is equivalent to the Bloch vector a since

p= ( P (a),P (−a) )

holds, where P (a) = (1+σ ·a)/2.
Bx

By

O

C

π a0

Since M is 2-dim plane excluded the origin, its
fundamental group is π1(M) =

{
[e], [γ], [γ2], . . .

}
.

Because of ϕ[γ2] = ϕ[e], there are only two kinds of
ϕ[C], i.e., {

ϕ[C]
}

[C]∈π1(M)
≃ Z2,

which corresponds to the identical and cyclic
permutations of two items.

O

e
γ
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Problem 2: How C is parameterized by dynamical
variables?

C

C̃

|ψ〉〈ψ|

|ψ0〉
|ψ〉

cf. For the geometric phase, the
space of projectors (the projective
Hilbert space) may parameterize
cycles (Aharonov and Anandan
1987).
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Cycles in terms of a dynamical variable b
Let b denote the set of mutually orthogonal eigenprojectors, i.e.,

b≡
{
P0, P1, . . .

}
,

where the order of Pn’s are disregarded.

p =
(
P̂0, P̂1, . . .

)φ[C](p) =
(
P̂φ[C](0), P̂φ[C](1), . . .

)
φ[C]

C
b(λ0)

b(λ) =
{
P̂0(λ), P̂1(λ), . . .

}
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Topological formulation: a summary
Behind the exotic quantum holonomy, we find a covering structure (a fiber
bundle with discrete structure group) consists of P and B.

1. P consists of (P0, P1, . . .).
2. B may be a c-number parameter space, or, may

consist of {P0, P1, . . .}. The latter offers the
parameterization of C by dynamical variables.

3. ϕ[C] (the permutation of eigenspaces induced by
C) and π1(B) has 1:1 correspondence, i.e.

{ϕ[C]}[C]∈π1(B) ≃ π1(B),

when π1(P) is simply connected (i.e., π1(P) has
only a single element).

4. Rigorously, we have a formula
{ϕ[C]}[C]∈π1(B) ≃ π1(B)/π∗ {π1(P)}, where a
projector π : P → B is called a covering map.

f

φC(f)

C

C̃
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Application: Classify all two level Floquet systems

U : a Floquet operator (time evolution operator for the unit time interval)
of a periodically driven two level system

A spectral decomposition of U :

U = z+P (a)+ z−P (−a)

where z± are the unimodular eigenvalues, and P (a) is a projection
operator parameterized by a normalized vector a:

P (a) = 1+a ·σ
2

.

Note that P (a)P (−a) = 0 holds (orthogonality).

±a are the Bloch vectors of eigenstates P (±a), respectively.



A topological formulation 33 / 38

Parameterization of p by “Bloch vector” a

In two-level systems, p≡ (P0,P1) can be parameterized
by a normalized Bloch vector a as

p= (P (a),P (−a)) .

Hence we identify P with a sphere S2.

a (∼ p)
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Parameterization of b by the director n
In two-level systems, the parameterization of b≡ {P0,P1} by the
normalized Bloch vector a is redundant

b= {P (a),P (−a)} ,

because the order of the elements in b makes no distinction, i.e.,

b= {P (+a),P (−a)} = {P (−a),P (+a)}

holds. Here we identify b with the director (headless vector) n, which is a
point in the real projective plane RP 2. Hence B ≃ RP 2.

p ∼ a(∈ S2)
Bloch vector

b ∼ n(∈ RP 2)
director
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ϕ[C] and the fundamental group π1(B)
For two level systems, because of π1(P) = 1 (∵ P ≃ S2),

{ϕ[C]}[C]∈π1(B) ≃ π1(B)

holds, i.e., π1(B) governs the eigenspace anholonomy (B = RP 2).

Each element of π1(RP 2) = {[e], [γ]} has a 1 : 1
correspondence with the permutation σ of the
eigenspaces.

▶ [e] ↔ the identical permutation
(∼ the absence of the anholonomy)

▶ [γ] ↔ the cyclic permutation
(∼ the presence the anholonomy)

Hence {ϕ[C]}[C]∈π1(B) ≃ Z2 also holds here.
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Kicked spin-1
2 : disclination (line defect) of n

Bx

By

O

π

C

n exhibits disclination (line defect)
in (Bx,By)-plane.

Bx

By

O

C

π a0

Because of the disclination, the
trajectory of a along C is open.
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Summary

The base and superstructure in the exotic quantum holonomy are
identified to establish the topological formulation.

|ψ〉 f = (|0〉, |1〉, . . . )

P̂ (= |ψ〉〈ψ|) p =
(
P̂0, P̂1, . . .

)
(ordered projectors)

b =
{
P̂0, P̂1, . . .

}
(the order is ignored)

Conventional Exotic

Geometric Phase off-diagonal GP

eigenspace anholonomy

p

φ[C](p)

φ[C]

C
b(λ0)

b(λ)

C̃

The homotopic classification of cycles (closed paths) play the central role
in the exotic quantum holonomy.

Ref. AT and T. Cheon, arXiv:1402.1634 (Phys. Lett. A, 379 (2015) p.1693).


