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1 Introduction

A Family of Allotropes of Carbon™!

O O Fullerenes, Graphene, Carbon nanotube, Carbon nanobud, Carbon

nanohorn, Graphyne, Carbon nanofoam...

*1 http://www.nec.com/, http://ja.wikipedia.org/wiki/



Fig. 1 Zigzag, Armchair and Chiral Nanotube. (©) wikipedia.

Quantum graph approach for carbon nanotubes:
® Kuchment and Post(2007)
® Korotyaev and Lobanov(2007)



In this study, we consider spectra on a broken carbon

nanotube.

Fig. 2 A broken carbon nanotube. (©) Akira Koshio.



Broken Carbon Nanotube
In a process to refine single wall carbon nanotubes, we need
metals such as Ni, Co, Y and Fe. So, carbon nanotubes are
strained with tiny particles of metals. In order to get rid of
these metals, we need to clean by acids. Carbon nanotubes
are broken in these process.

cf: There are a method to refine single wall carbon

nanotubes without any metal.
( metal-free thermal CVD , Akira Koshioll 2011 )



In this study, we get rid of edges from a metric graph
corresponding to the zigzag carbon nanotubes and call
them broken zigzag carbon nanotubes.

Fig. 3 A pure zigzag carbon nanotube (Left) and a
broken zigzag carbon nanotube (Right).



Throughout this talk, we consider only the zigzag carbon
nanotubes:

Definition 1.1 (A pure zigzag carbon nanotube).
For a fixed number N € N, we call

NV = U I
w=(n,j,k)EZ

the zigzag carbon nanotube with N - z:gzag where
J=10,1,2}, Zny =Z/(NZ), Z:=7xJxZy and
I',(~|0,1]) be an edge in Fig. 2 forw € Z.



Before we see the precise definition of T, let us see its

picture:

Fig. 4 Cutting and opening I'®, we obtain the above

lattice. The indexes imply the ones of f‘n,j,k.



Definition 1.2 (The precise definition of each edge I',, ; ).

Let Ry = 451\]?& . For w = (n, j, k) € Z, we define

2N
'y ={x=r, tte,|] 0<t<1}~]0,1]), where

Tk . 1k
Ck = CO8 —, sy =sil—r, Kk = Ry (ck, Sk, 0),
€n,0,k — (O, O, 1), ey = (O, O, 1),

€o
€n,1,k — RKn4+2k+1 — Knt2k 5
€0
€n,2,k — Kn4+2k+2 — Kn42k+1 — ?,
3n

I'n,0,k = Kn+42k + 7607

'ni,k =Ynok +€, Tn2k=Ynt1,0k-



We now get rid of some of vertical edges from T2V for a
fixed NV € N.

Definition 1.3 (A broken zigzag carbon nanotube). Let
Z: =7 xJ X 7Zy, where J :={1,2,3,4,5}. For
(n,7,k) € Z, we consider edges Iy, ; i, defined as follows:

'naik=1no2k—1,Inor=1n12k-1, I'n3ske =1n22k—1,
Fn,4,k — Fn,l,Qk and Fn,g),]€ — Fmg’gk. We call

N — U T,
weEZX

a broken zigzag carbon nanotube*?.

*2 The right picture in Fig. 3 is the one in the case of N = 4.



Cutting and opening I'?, we obtain the lattice in Fig. 5.
The indexes in this picture imply the ones of I}, ; .

Fig. 5 A broken zigzag carbon nanotube I'°.



Let us define periodic Schrodinger operators in the Hilbert space
H = L?(TN) = ®,e=zL?(Ty), where L?(T,) := L?([0,1]). For a
real-valued function ¢ € L?(0,1), we define

(Hfo)(@) = —fi(x) +a(@) fu(z), z€(0,1) =TI, weZ,

Dom(H)

.

/"

P f. e LA@N)

we=

EBwez( fo +afw) € LQ(FN)

nlk(l)_l_f’;LQk(O) n5k 1(1)207
fn,l,k(l) Fr2.k(0) = frsh1(1),

n,2,k (1D 17 55 (0) + F1 g 1,£(0) =0,
fn,2,k(1) fn,S,k(O) fn—l—l,l,k:(o)
fn,3,k(1) — fn,4,k(0)7 n,3, k(l) n,4, k(o)
fn,a,6(1) = fn,5k(0), ffq,,4,k(1) = ;L,5,k(0)

for neZ and k € Zx




Definition 1.4 (A degenerate broken zigzag nanotube).
We call T'! a degenerate broken zigzag nanotube.

For convenience, we put I'y, ; =1, ;1 forn € Z and 5 € J.
Then, we have the flag-like metric graph in Fig. 6.

Fig. 6 A degenerate broken zigzag nanotube T'*.



Let Z1 :=7Z x J. We fix N € N and puts:eiQWW. For

k=1,2,...
(Hk fn J)(CB}

Dom(Hk)

/

@ Up, j € LQ(Fl)

(ﬂ,j)éZl

N, we define Hy, in L?(I'!) as follows:
( )+q(z)un j(z), z € (0,1) =T ,, (n,j) € Z1,

€B<n,g>ezl( U j +quny)€L2(F1),

—uy, 1 (1) +uj, 2(0) — shuy, 5(1) =0,
un,l(l) — un,g(O) — skun,5(1),
—uy, o(1) +uj, 5(0) +uyp g 1(0) =0,
Un,2(1) = un,3(0) = un+1,1(0),

un,3(1 i_uﬂ( ) Uy 3(1) = ug, 4(0),

un,4(1) = un,5(0), u;@,4(1) — ufn75(0)
for neZ

\




e Utilizing the same method as [Korotyaev and Lobanov,
'07], we obtain a unitary operator satisfying the following

unitarily equivalence:
N
H ~ &, Hyg.

On the unitary equivalence of H and @5:1 Hy,

For f € L*(T'"), we identify f as the sequence of vectors as

follows:

[ frin )
fn.5,2
f — (fn,j,k)(n,j,k)EZ — (fn,j)(n,j)ezl — ( )

\ fn,.j,N /

)(n,j)ez, -



Then, the operator H can be written as follows:

( — I 1 (@) + (@) fr g1 (2) \

— [ 0(@) + a(x) fn,j,2(x)
(H fn,3) () = | . (n) € 2,
\ —f/n@) +a(@) N () )
Dom(H)
( @aezl (_f(/x/ =+ QfOé) < LQ(FN)v )
—fna(D) + f1,200) = Sf}, 5(1) =0,
?,1(1)(:) fn}?(O)(z) S?,5((1)),
_ 21N ’:L—I—l,lo_’;L,Ql_I_?/?,,BOZO’
< aee@ fo € L) fn+1,1(0) = fn,2(1) = fn,3(0),
. fn,?)(l) — fn,4(0)7 ff)/’)j’g(]‘) — fy/LA(O)a
Sn,a(1) = fn,5(0), 7/@,4(1) — 7/1,5(0)
\ for neZ )

Here, S is the following matrix:

Vs




/ 0O 0 O 0 1 \
1 0 O 0 O
g_—| O 1 0 0 0
\0 0 0 --- 1 0)
The eigenvalues of the matrix S are {s*}1'_,, where
s = ¢!~ . For each k, the eigenvector corresponding to s¥ is
Ve = L t(].,S_k7S—2k,"' 78_(N_1)k)

The matrix S can be decomposed as

S=5sP1+sPy+---+s" Py,



by using the matrices Py, Pa, ..., Py satisfying
Pru = (u, v )vg (ue CY) and I =P+ -+ Py

/ﬁwl\

n32

Thus, for any f = ( _ )n.iyez, € L*(TY), we

\ fn,j,N /
have

/fwl \ /fn:fl \ /fwl \

7 =7 +.-+ Py

\ fn,:j,N / \ fn,j,N / \ fn,j,N /

= (fnj,v1)v1 + -+ (fn,j, vN)UN




Considering the unitary operator U : L*(T'") — @5, L*(T'")

(e N

fa,2

\ fo:,N )

Uj = ((faavl)OéEle"7(fa7vN)Oé€Zl)’ f :(

)066217

we have
UHU_l — @]kV:lHk.

e Thus, it is sufficient to examine o(Hy) in order to examine
o(H).

e In order to examine o(Hy), we recall the spectral theory for
the corresponding Hill operator L := —d*/dz” 4 ¢ in L*(R),
where the real valued function g € L?(0, 1), appearing as the
potential of H, is extended to the 1-periodic function on R.



Spectral Theory for the Hill operator
For A € C, let O(x, \) and ©(z, A) be the solutions to the
Schrodinger equation

—y'(z, A) +q(@)y(z,A) = Ay(z,A), z€R, (1)
as well as the initial conditions 8(0,\) =1, 8’(0,A) =0
and (0, \) =0, ©'(0,\) =1, respectively.

(I) Since 8(x, ), 0'(x, A), p(x, A), @' (x,\) are entire in
A € C, the Lyapunov function

(1, A) + ¢ (1, \)
2

A(N) =

Is also entire in A € C.



(I1) It is known as the Floquet—Bloch theory that the
spectrum of L is characterized by A(\) as

o(L) = 0ae(L) = {N € R [AN)] < 1} = | J[Agj-2. Azj1]

jeN

where Ay, A1, Ao, ... are zeroes of A(A) &+ 1 and are
labeled in increasing order.



(I11) The zeroes of A()\) + 1 satisfy the inequality
A <AL < Ao < A3 < A\ < ...

(IV) For j € N, the interval B, := [A2;_2, A\2,;_1] is called the
jth band of o(L), counted from the bottom. Two
consecutive bands B; and B are separated by
G, := (A2j—1, A2j), which is called the jth gap of o(L).

(V) Let op(L) be the Dirichlet spectrum, namely, the
spectrum of the eigenvalue problem —y” + qy = Ay with
y(0) = y(1) = 0. Since op(L) is discrete, we put
op(L) = {pn}S2, where {1, }52 is arranged in the
Increasing order. Then, we have
op(L) ={A € R[] ©(1,A) =0} and pp € [Aon—1, A2n]
for each n € N.



2  Main Result

Definition 2.1 (The discriminant (Lyapunov function) for
o(Hy)). For A € C, we define

01 (N)p1(A) — 7
2

1 —01(M)e1 (M)
3 ,
(2)

A (N)D(X\) = 4A*(\) + AZ(N) +

where 01(\) = 0(1, \) and ¢} (\) = ¢'(1, N).
Fork=1,2,..., N, we define
2A%(N)D(N) + s

Dk, A) = VAAT(N) — AA2(\)s2 + 52

(3)

on C\ Py, where
Pr ={\€C| 4A*(\) —4A*(\)s; + sz = 0}. Here, we recall

S = sin %’“ We call D(k, \) the discriminant for Hy.



Definition 2.2. Fork =1,2,..., N, let o(H}y) be the flat
band of Hy, namely, the set of all eigenvalues of Hi with

infinite multiplicities.

Utilizing a direct integral decomposition for Hy, we see that the
function D(k, A) plays the role of the discriminant for the
operator Hy foreach K =1,2,..., N:

Theorem 2.3. Fork=1,2,...,N, we have
O'(Hk) — O'oo(Hk) U O‘ac(Hk), where

0oo(Hy) = op(L) and oue(Hy) = {N€R| D(k,\) € [1,1]}.

For convenience, we put D(0,\) = D(N,\) and Hy = Hy.

. . N—k .
Since sN_k:smW(N ) :sm%’“ =sg fork=1,2,..., N, we

have D(k,\) = D(N — k,\) fork=1,2,..., N.




Thus, it is sufficient to examine the properties of the

discriminants
DO, A\),D(1,\),....,D{ —1,))

if N =2/ —1 and ¢ € N. On the other hand, it is sufficient to

examine the properties of the discriminants
DO, X),D(1,A\),....,. D —1,)),D(l, \)

if N =2¢ and ¢ € N.

Let {n = [252], where [z] implies the maximal natural number

which does not exceed x € R. Note that /5y = ¢ — 1 in the both
case where N =2/ — 1 and N = 2/ for a fixed ¢ € N.



Theorem 2.4. We have the followings:

(i) Fork=1,2,..., N, we have g4c(Hr) = 0ac(HNn—k).
(ii) We have o,.(H) = Uk 00ac(Hy) if N is odd,
Oac(H) = UiNarlaac(Hk) otherwise.

(iii) For k =0,1,2,..., N, there exists real sequence

AZ,0<>\Z,1<)\ 1<>\,{72<)\,€2< <>\,m<)\

such that oqc(Hy) = (J.Z [)\JFJ 1y A 4l

(iv) We have the following inequality:

+ — + — + — + - +
Moo < Ag1 <Ag1 < Aga<Aga<Aps<Agsz<Ags<Agy

<Aos < Ags < Aos <Ags <Aor<Agr<Ags < Agg <o

<>‘O_,4n—3<>‘ an—3 < Agan— 2<>\O4n 2
< Ag an— 1<>\O4n 1<)\O4n§>\04n



(v) Fork =1,2,...,¢Nn, we have

Mo <A SA L <A S < A <A < Aia <A
<Ais SA 5 <A < A < Aer <AL 7<Ak8<>\k8<

< Apdn— 3§)\k4n 3 < Ak an_ QS)‘kéln 2
<)\lz4n 1§)\k4n 1<)\k4n<)\k4n

o [fsy #

k=1,2,....,¢n . Ifq =0 and sx = \/;, then we have
Ak 2m— 1—)\:% ,forneNandk=1,2,...,¢N.

o Ifk+# 2, then we have Ay 4, _ 27&)‘13477, , for any
k=1,2,...,¢nN. Ifq_Oandk— , then we have
Akdn_o = )\;4,”_2 for anyn € N andk =1,2,...,¢N.

, then we have A\, | # A on_1 forn € N and

OOI\1



(vi) Assume that N = 2{. Then, we have A\, < )‘Zn for all
n € N.

(vii) Let {nn}n=1 ={A €ER| A(N) =0}, {tnfn=1 = op(L)
and {&n}os = {X€R| A*(\) = 3} be labelled in the
increasing order each other. Then, we have

)\k4n 2<nn<>\k4n 29 >\k4n<:un<)\k4n

foranynm € Nand k=0,1,2,..., N. Furthermore, we have

Moan—sg <€mn-1 <A 4 50 Aoano1 < E&n < Apan_1

foranyn € Nand k=0,1,2,...,¢N.
(viii) For n € N, we put

An = max A, and A = min A\

0<k<lpn 0<k<tn O



Then, we have

C8

Ugac Hk: —

Especially, we have

n17

n=1

o (H):<U o1 An ] it N =20—-1,
- \(U [)\;L_ 17>\'r_2,]) Uo-ac(HE) lf N: 2€

(ix) For n € N, we put v, := (\,,,\,;). Then, we have the
followings:
(a) Forn €N, we see that \; 4, # A 4,, if and only if yan # 0.
(b) Forn Z 0 (mod 4), we see that v, % () if and only if there
does not exist k € {1,2,...,{n} satisfying Ak = A;n.



3 Comparision

Let us compare our results with the results established in
[Korotyaev and Lobanov, '07]. Kotoraev and Lobanov studied
the spectral theory for periodic Schrodinger operators on zigzag
carbon nanotube in the even case N = 2m + 1 for a fixed

integer m > 0 such as

(Hfo)(x) = —f(2) + q(2) fu(z), =€ (0,1),

~

Dom(H)
f B, ez (—fl +af.) € LX(TN), w
nOk(l)_I_f/lk(O) an 1(1):()7
2 N fn,l,k(o) In,0 k(l) frnok—1(1),
< wele%fw =E n+1,0,%(0) = f"r/z,l,k(l) + f2.1(0) =0, g
fn1.k(1) = fn+1,0%(0) = frn2x(0)
\ for ne€Zand ke Zn )




- 27T

Recall that s = ¢~ . Korotyaev and Lobanov proved the

unitarily equivalence H ~ @]k\rzlflk, where ﬁk is the following
operator in L?(T'!) for k =1,2,..., N:

(Hifo)(x) = —f () +q(z) fa(z), =z € (0,1), o€ 2 :=17Zx{0,1,2},

Dom([zlk)

f

\

P foc LT

0462,;1

@aéél (_f(/x/ =+ Qfa) < L2(F1)7 )
—fr0(1) + f1,1(0) = s* f}, 5(1) =0,
fn,l(o) — fn,O(l) — Skf’n,Q(l)v -

Frs1,000) = £, 1(1) + £}, 2(0) =0,

frn,1(1) = frnt1,0(0) = fn,2(0)
for n € 7 J




The degenerate zigzag carbon nanotube T'! can be seen in
Fig. 7 (Compare with Fig. 6.).

n—!—l 1

n 1.1
n 1,0 O Q n+1.0 Q

n T2 n . n—|—1 2

Fig. 7 The degenerate zigzag carbon nanotube T



For k=0,1,2,...,N — 1, define Fy(\) = 2A%(\) + Hlo\)flo\) — 1,
§k = Fb+8k,f? = s2(1 —€2) and F;7 = cxék + /P

Theorem 3.1 (Korotyaev and Lobanov, '07).

(i) Fork=0,1,2,...,N, 0(H) = 0o (Hg) U 0ac(Hy), where

0oo(Hy) = op(L) and gac(Hy) = {\| F;7 () € [-1,1]}.
(i) Fork =0,1,2,...,N, 0ac(Hy) = cac(Hn_}).

(iii) For k = 0,1,2,..., N, there exists real sequence
S+ 3 < 5+ Y+ Y- < 3+
Ak,0<>‘k,1§>‘ 1<>‘k2<)‘ "<>‘k,n§>‘k,n<°"
such that

o

cac(Hr) = [N _1 A5 5]
j=1



(iv) Theorem 3.3 in [Korotyaev and Lobanov, '07] reads that

Moo < Ao1 <Ag1 <Age AT <Ags <Ags <Ags SAG, <
<>\02n 1 <>\02n 1 <>\02n§)\(—)|_2n

(v) Theorem 1.4 in [Korotyaev and Lobanov, '07]*3 reads that

;\2,0 < 5‘12,1 < 5‘;,1 < 5‘12,2 < 5‘:,2 < 5‘12,3 < 5‘;,3 < 5‘12,4 < 5‘2_,4 <

N
if k= —
3

~ ~

+ — 5t 3% &
Ao <At SALL <AL <AL <AL <AL <AL, <ALy

N
if ko

fork=1,2,....N —1.

*3 Note that k = % is equivalent to s = \/7



Remark 3.2. Theorem 1.8 implies that

+ - + - + - + - +
Ao S AR S A1 <AL < Ap o <AL 3 S AL <AL, <A, <.

N 7
if k= —"sin 14/—

T 8’

Ao <A1 <Apq <Aoo SApo <AL <Apz <AL, <Ap,y<--

if k=
6

Ao <A1 <A1 <Aoo <Ap g <AL 3 <AL <AL, <Ap <+

N N 7
if k4 —, —sin~ 14/ -
6 S

fork =1,2,...,N — 1. Compare this result with Theorem 1.8 (v).

Open Problem

Does Kk =1,2,..., N — 1 satisfying s;. = sin %k = % exist 7



This open problem was resolved as follows:

Lemma 3.3. (Miyanishi, 8, September, 2015)
We have sin™’ \/g Z Q).

Remark 3.4. Remark 3.2 combined with Lemma 3.3
implies the followings: For k =1,2,.... 05 — 1, we have

+ - + - + - + - +
Ao S Ap1 <Apg <AL S AL <AL <AL3 <AL, <Ap, <

- + - + - + - +
<Ak S Aks < Ake S e <7 <Ak <Ak <Aps <

N
if k= —
6

+ — + — + o + B i
Ao <A <AL <A <A <ALy <A s <AL, <AL, <

N
if k.



4 Unperturbed Discriminant

In order to roughly understand Theorem 2.4, we consider
the unperturbed case: ¢ = 0. Namely, we consider

9 29 1
Do(0,)) = = cos®> VA | , 4
0(0:4) 2 8  8cosZ VA 4
YV —29cos® VA +1+4s?
Dok, ) — 36 cos* VA —29cos? VA + 1+ S5 (5)
4\/4 cos? VA — 452 cos2 VA + s2
fork=1,2,...,£ — 1. In the case where N = 2¢ and
¢ € N, we additionally need to consider
36 cos* VA — 29cos2 VA + 5

4(2cos2 VA — 1)



Fig. 8 The graph of Dy(0, ) and cos V.




10 kll 40
x

Fig. 9 The graph of Doy(4,\) and cos V.




A

—7—7—"7—

10 a0 40

1
P

Fig. 10 The graph of Do(1,X), Do(3, ), Do(5,A) in
the case of N = 11 and cos V).



5 Parts of the proof

We shall see that the perturbed discriminants D(0, ), D(¢, \) and
{D(k, A)}lC , behaves in a similar way to the unperturbed
discriminants Do (0, \), Dg(¢, A) and {Do(k,)\)}kzl each other. We

make sure this in only the case where k£ = 0.

Lemma 5.1. The discriminant D(0, \) has the following
properties.

(i) If X\ € op(L), then we have D(0,\) > 1.

(i) Let {n, 1>, ={X € R| A(X) =0} be labelled in the
increasing order. Then, for each n € N, we have

D(0,)\) = +o0 as)\ﬁnn__()

(iii) If \ satisfies A*(\) = =%, then we have D(0,\) <

(iv) We have D(0, \) — +oo as A — —oo0.




We recall

2A%(A)D(X) + s

D(k, \) = .
VAAL(N) — 482(N)s? + 57

The asymptotics of the fundamental solutions are well-known**:

9(1,)\)—008\/_+—/ (sin VA + sin V(1 — 2t))g(t)dt

. elSVA

ro(45).

, Vit = [ (sin VA +sin V3

@' (1,\) = cos )\—I—m/() (sin VA +sin VA(1 — 2t))q(t)dt

elSVA
+O as |A\| — oo.

Al

*4 See [Poschel and Trubowitz, Inverse Spectral Theory].



Thus, Rouché’s theorem is valid in the region appearing in the next
two pages:

Theorem 5.2. (Rouché’s theorem*.) Suppose that f(z) and g(z) are
meromorphic functions defined in the simply connected domain D,
that C' is simply closed contour in D, and that f(z) and g(z) have no
zeroes or poles for z € C. If the strict inequality

1f(z) +9(2)| <|f(2)|+ |g(z)| holds for all z € C, then we have
Z¢— Py =724 — Py, where Z; (Z,, respectively) is the number of
zeroes of f(z) (g(z), respectively) that lies inside C and Py (P,

respectively) is the number of zeroes of f(z) (g(z), respectively) that
lies inside C'.

*> See [Mathews and Howell, Complex Analysis for Mathematics
and Engineering]



Preparation for Rouché’s theorem (1) We define

Co(n)={reC \/X:mr—l—fyj—kti, —n <t < n},
C’j(n):{)\EC \/X:n'zr—l—*ijrl—l—ti, —n <t < n},
C’Jx(n):{AECC VA =t + ni, nmt+v; <t < nm+ 41},
C'J (n) ={\e€C| VI=t—ni, nt+v; <t < nw+ v},

_ _ 1 _ 1 -
where vg = 0, 1 = arccos 7 and o = arccos 5 for ) = 0,1 and

n € N. For 3 = 2,3 and n € N, we define
C(n)={AeC| VA=nr+d;+ti, —n<t<n}
Crn)={\e€C| Vi=nm+641+ti, -n<t<n},
C’Jx(n):{AEC VA =t + ni, nt+90; <t<nm+dj41},
Ci(n)={rxeC| VA=t—mni, nr+6 <t<nm+61},

where 02 = arccos(—%), 03 = arccos(—T) and 64 = .



Furthermore, let €2;(n) be the region surrounded by
Cj(n) = Cf (n) — € (m) ~ C5 (m) + Cf ()

for ) =0,1,2,3 and n € N.

(2) For real sequences {an }>2 ; and {by }>° , satisfying
Sup,,en @n < inf, ey bp and an < by for every n € N, we define
segments

Ctp)={AeC| VA=b,+ti, —n<t<nl,
C(an)={A€C| VA=an—ti, —n<t<n},
C*(an,bp) ={XEC| VA=ni+by +tlan —bn), 0<t<1
CH(an,bn) ={A€C| VA=—-ni+an+tln —an), 0<t<1}

and C(an,bn) = C1(byn) + C*(an,bn) + C~ (an) + C~ (an,by) for
each n € N. Moreover, let Q2(an, by ) be the region surrounded by
C(an,bn) for each n € N.



Lemma 5.3. We have the followings:

(1) For a fixed ¢ € (—L,1), there exists some ng € N
satisfying the followings:

(i) D(0, \) — ¢ has exactly one zero, counted with
multiplicities, in €);(n) for each j =0,1,2,3 and

ng < n € N.

(ii) D(0,\) — ¢ has (2 + 4n) zeroes in

Q(—(v2 +nm),y2 + nm) for any n > ngy, where

Yo = arccos .

(iii) There are no other zeroes of D(0, \) — c.



(I1) For c € [1,00), there exists some ng € N such that
D(X) — ¢ has 2 zeroes in Q(nw + Z,nw + 2m) for each

n > ng.
(Ill) For r € (0,1), there exists some ng € N satisfying the

followings:

(i) There are (1 4+ 4n) zeroes of D(0,\) — 1 in
Q(—(nm +7),nm + r) for each n > nyg.
(ii) There are 2 zeroes of D(0,\) — 1 in Q(nm —r,nm + 1)

for each n > ny.
(iii) There are no other zeroes of D(0,\) — 1 except for the

zeroes stated in ().



(IV) For r € (—1,1), there exists some ng € N satisfying
the followings:

(i) There are 2 zeroes of D(0,\) 4+ 1 in both regions

Q(v1 +nw —r,y1 + nm+ 1) and
(03 + nm —r,03 + nw +1r) forn > ng, where
Y1 = arccos % and 03 = arccos(—%).
(ii) There are 4n zeroes of D(0,\) + 1 in Q(—nm,nm) for
n > nyg.

(iii) There are no other zeroes of D(0,\) + 1.



To be continued in ...

Schrodinger operatprs on a periodically broken zigzag
carbon nanotube, submitted.
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