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Abstract

Three-Dimensional Super-Resolution for Magnetic Resonance

Imaging using Convolutional Neural Networks

Churong ZHUO

High resolution magnetic resonance imaging (MRI) is becoming indispensable for
accurate quantitative medical diagnosis. However, it is difficult to obtain high-resolution
MRI images due to the medical device and other limitation. Single image super-
resolution (SISR) method can generate a high-resolution (HR) image from a single
low-resolution (LR) image. Recently, SISR methods has made a major breakthrough in
deep learning. In this paper, we first used two-dimensional (2D) super resolution con-
volutional neural network (SRCNN) to generate the HR image in MRI images, then we
introduced a new neural network architecture, three-dimensional (3D) enhanced deep
super-resolution network (EDSR) to generate HR images of structural brain magenetic
resonance images. The proposed 3D networks show superior performance over the 2D
SRCNN networks and interpolation methods. The results suggest that 3D convolutional

neural network could be promising and helpful in medical imaging super-resolution.

key words Convolutional nerual network, Super-resolution, Deep learning, 3D

nerual network, High-resolution medical imaging, Magnetic resonance imaging
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Chapter 1

Introduction

This chapter presents the background and significance for the research presented
in this thesis. We start with the research background in section 1.1. Then we review
super-resolution in section 1.2. In section 1.3, we discuss about prior work on super-
resolution method, such as, interpolation-based method, reconstruction-based method
and example-based method. In section 1.4, we review about deep-learning algorithms

for super-resolution. In the section 1.5, we show significance of our research.

1.1 Background

Medical imageing is the result of interactions between a tissue and a physical phe-
nomenon such as a wave (in Ultrasound, MRI) or an ionizing particle (in X-ray/CT,
PET)[1]. It is becoming indispensable for medical diagnosis and other medical appli-
cation, but due to medical imaging device and other limitations, it is always difficult
to obtain high-resolution (HR) images. High-resolution medical images can help doctor
to have clear sight of patient and make better decision about the treatment options.
It is also important to have HR images in medical imaging, since it contains abundant
structural details which can help to facilitate accurate diagnosis and quantitative mea-
surements. However, due to technological and economical limitations, it is difficult to
obtain HR medical images.

Super-resolution has gained increasing research attention for decades. However,



1.2 Super-resolution

most of the researches are based on natural images instead of medical images. In
this thesis, we first applied a benchmark method-super-resolution convolutional neural
networks (CNN) in MRI, then we proposed a new three-dimensional CNN for MRI.
We showed that CNN and the proposed method for super-resolution can be useful in

medical images domain.

1.2 Super-resolution

In computer vision fields[2], high-resolution (HR) images are required for better
performance in pattern recognition and analysis of images. Super-resolution|3] refers to
construct a HR images from one or more obtained LR images. There are two kinds of
super resolution methods, one is using multiple images to reconstruct the high resolution
(HR) image (MISR), and the other is obtaining HR images from single LR images
(SISR). SISR is more efficient compared with MISR. In MRI super resolution, multiple
image super resolution techniques have been proposed[4, 5] because the accuracy to
the true image based on the statistical estimation is important in the medical scene.
However, the scan time of MRI is long, and it is difficult to obtain multiple images
because the scan time is too long for patients to wait without any movement. Therefore,
SISR method is a promising approach to address SISR problem.

In SISR methods, one specific LR input can correspond to many possible HR
outputs, and it is usually intractable for us to map the LR input into the HR space[6]. So
SISR is a notoriously challenging ill-posed problems. Till now, mainstream algorithms
of SISR methods can be broadly categorized into three categories: interpolation-based

methods, reconstruction-based methods and example-based methods.



1.3 Approaches for super-resolution

1.3 Approaches for super-resolution

1.3.1 Interpolation-based methods

Interpolation method[7] is widely used in image processing, it is the process of
estimating unknown values from known sample values and estimating continuous sam-
ples from discrete samples. It is intuitive and computationally effective. There are
three basic interpolation methods, nearest neighbor, bilinear, and bicubic interpolation
methods.

Nearest neighbor method is a local interpolator so the computing load is relatively
light, it is also the simplest and fastest implementation way in image scaling. Nearest
neighbor simply selects the value of the closest pixel to which the interpolation resam-
pling maps. And it have the worst results since magnified image have mosaic effect and
the zoom out results isn’t quite true to the original input.

Bilinear methods is a resampling method that uses the distance /& weighted average
of the four nearest pixel values to estimate a new pixel value. The four cell centers from
the input raster are closest to the cell center for the output processing cell will be
weighted and based on distance and then averaged.

Bicubic method is a bit difficult to use. Bicubic method considers the closest 4x4
neighborhood of known pixels. Since these are at various distances from the unknown
pixel, closer pixels are given a higher weighting in the calculation. Bicubic produces
noticeably sharper images than the nearest neighbor method.

Interpolation methods is the simplest and fastest way to construct HR images, but
it often generate over-smoothed images which loss the details of fine edges and introduce
additional artifacts. In our thesis, we use two interpolation methods to construct HR

images and then compare with our proposed methods.
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1.3.2 Reconstruction-based methods

Reconstruction based super-resolution methods[8, 9, 10, 11] often adopt sophis-
ticated prior knowledge to restrict the possible solution space with an advantage of
generating flexible and sharp details.

However, the choice of magnification factors would affects the reconstruction
results[12]. And researcher also found that with the increment of the magnification
factor and reconstruction-based methods can only generate an overly smoothed
output[13]. In general, the reconstruction performance degrades rapidly when the scale

factor increases, and these methods are also time-consuming|[14].

1.3.3 Example-based methods

Example-based methods[15] are also known as learning-based methods,it use the
image database or the image itself to the relationship between LR and HR image pairs.
And use this relationship as a prior constraint to generate HR images. It obtains
information from a large number of training sets, it can achieve better results than
reconstruction-based methods when enlarging amplification factors.

Freeman et al.[16] first proposed Markov Random Field (MRF) in super-resolution
domain. Compared with reconstruction based methods, it could obtain more abundant
high frequency details to construct HR images under the condition of magnification 4
times. Chang et al.[17] proposed neighbor embedding methods by assuming the similar
local geometrical feature space between LR and HR images to get high quality recon-
structed images. It use less training samples and have low sensitivity to noise compared
to MRF methods, but it is difficult to choose the block size of neighborhood. Inspired
by the sparse representation theory[18] in signal recovery, many researchers[19, 20, 21]

proposed sparse presentation methods in SISR domains. Sparse representation do not



1.4 Deep learning methods for super-resolution

need to select the neighborhood size, its shortcoming is how to choose a over complete

dictionary.

1.4 Deep learning methods for super-resolution

In the past few years, example-based methods solution based on deep learning
methods are playing a vital part to improve the image quality of magnified images in
many computer vision tasks. Deep learning is an algorithms that directly learn diverse
representations of data[22]. Influenced by the success of deep learning method which
applied in computer vision field, Dong et al. proposed super-resolution convolutional
neural network (SRCNN)[23, 24|, which is the SISR using only 3-layers deep neural
network to generate HR image, and it demonstrated high quality image reconstruction
by machine learning in natural images. We will explicit more details of SRCNN in chap-
ter 3. In medical image field, researchers have discovered that the SRCNN application
for chest radiographs[25] and CT images[26] could be greatly improved medical image
quality compared with conventional linear interpolation method. However, the recon-
struction results of SRCNN is sensitive to little changes of the structure. When using
different initialization and training method, it will obtain different performance even in
same model. Therefore, it is important to have a well-designed CNN architecture and
optimization methods when training the neural networks.

Recently, residual neural network (ResNet)[27] gains researcher’s attention because
of its promising approach for image reconstruction. And different kinds of architec-
ture that try to obtain HR images from LR images using ResNet have been published.
Unfortunately, there are limitation about the aforementioned deep learning methods.
First, the previous approach of deep learning is proposed for 2D natural images, but

many medical images are 3D volumes. Second, directly convert 2D deep-learning net-
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works into 3D networks might result in enormous number of network parameters and
thus suffer problems in memory allocation. Finally, the architecture could be further

improved. Hence, 3D deep-learning networks for MRI images is desirable.

1.5 Significance

In this paper, we first applied and evaluated the application which using 2D SRCNN
to MRI in order to obtain high quality medical images. The reconstruction results of
SRCNN showed that it achieved great results compared with interpolation methods.
However, 2D SRCNN seems to generate over-smoothed HR MRI in visual effects. Then
we proposed an architecture for MRI that could using 3D convolution to process the
volumetric information contained in MRI scans, and taking advantage of ResNet to
improved the quality of reconstructed images. The model is based on enhanced deep
super-resolution network (EDSR)[28]. We use perceptual loss based on the first three
convolution layers of VGG16[29] instead of mean square error (MSE) loss in order to
improve the quality of reconstructed images. We evaluate our proposed 3D EDSR model
by peak signal-to-noise ratio (PSNR)[30], structural similarity (SSIM)[31] and mean
opinion score (MOS), the MOS showed that our network outperformed 2D SRCNN and

interpolation methods.



Chapter 2

Convolutional Neural Network

In this chapter, we explicit some basic deatils of convolutional neural networks that

would be used in our research.

2.1 Brief of CNNs

Machine learning is subfield of artificial intelligence (AI). Its goal is to make com-
puters to learn and act like humans do, and improve their learning over time on their
own, by feeding them data and information in the form of observations and real-world
interactions. In the past decade, machine learning has been used in many fields of
modern society: effective speech recognition[32], effective web search[33, 34], identify
objects in images([35, 36], improve the quality of the images. The conventional machine
learning methods were limited when it process raw form of the natural data. It needs
lot of domain expertises to construct a traditional machine learning system, but they
still need guidances. Human intervention is needed when it returns an inaccurate pre-
diction. But with a deep learning model, it can determine on their own if a prediction
is accurate or not.

Covolutional neural networks were inspired by the organization of the animal visual
cortex. Research in the 1950s and 1960s by Hubel and Wiesel [37] on the brain of
mammals suggested that how mammals perceive the world visually. They found out that

visual cortex of cat and monkey include neurons that exclusively respond to neurons.



2.2  Structure of CNNs

In 1984, inspired by the concept of receptive field, Fukushima proposed a a hierarchical
neural network model[38] which was called the neocognitron. Later, Le cun et at.
introduced a convolutional neural networks which was called LeNet-5[39]. LeNet-5 was

able to classify hand-written numbers.

2.2 Structure of CNNs

CNNs have a different architecture than regular neural networks[40]. Regular neural
networks take all the informations in original images since each neuron is fully connected
to all neurons in the previous layer. It causes huge numbers of the parameters which
is wasteful and may quickly lead to overfitting. Unlike regular neural networks, CNNs
can reduce the original images into a single vector.

A CNN basically consists convolutional layer, pooling layer and fully connected
layer[41]. First, the original input data will be transformed into raw pixel data. Next,
convolutional layer will obtain the feature map by using different feature detectors
(filters). Then, rectified linear unit layer (ReLLU)[42] is used to increase the non-linearity
in the images. Afterward, pooling layer will perform a down-sampling operation in the
feature map. Finally, fully connected layer will combine all the features that is gained by

previous layers into a wider variety of attributes. Figure 2.1 shows a simple architecture

of CNN.

2.3 Convolutional layer

Convolutional layer is one of the important layer in the CNNs. The term con-
volution refers to the mathematical combination of two functions to produce a third
function. It merges two sets of information. In the case of CNNs, the convolution refers

to using a edge detectors (filter or kernel) to produce extract features from an input



2.3 Convolutional layer

|

Input image Convolution + Pooling Fully Connected

Fig. 2.1: A simple CNN

image and produce feature map. Convolution preserves the relationship between pixels

by learning image features using small squares of input data.

2.3.1 Convolutional operator

In order to generate a feature map, an array of weights are taken and slided it over
the image, then taking the dot product between the weights and small area of the pixels
to generate a feature map. Stride is the number of pixels slide over the input weights.

As the figure 2.2 shows below, the input image has been defined as I;j, the filter
array has been defined as Wy, and the feature maps is defined as O;;. The convolution

computation is formally defined as follow:

N
Oij = Zfijk * Wijk + bias (2.1)
k=1

There are three feature maps after the convolutional computation since the picture has

3 channels, then combine all three feature maps into one feature maps.



2.3 Convolutional layer

Fig. 2.2: Convolution computation

2.3.2 Padding

There are two problems when we apply convolutional operator. First, every time
we apply a convolutional operator, the input images would become smaller and smaller.
As figure 2.2 shows, the 9x9 image shrink into 4x4 image. Second, the pixel at the
corner or the edge is used only once in the computation, but the pixel in the middle is
used multiple times in the computation. The pixels on the corners are used much less in
the outputs, that means we throw away a lot of information near the edge of the image.

In order to solve these problems, we pad the image with an additional border of
one pixel all around the edges. As figure 2.3 shown, after padding an additional border,
the original input size become 8x8, and we manage to preserve the original input size

of six by six.

2.3.3 Activation function

Convolution is a linear operation-element wise matrix multiplication and addition,
adding a activation layer can help to transform the input of the neurons. There are

many activation method, such as sigmoid function, tanh function and ReLU function.

— 10 —



2.4 Pooling layer
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Fig. 2.3: Padding

Recently, ReLU becomes popular in CNNs since it is easier to calculate and can reduce
the gradient vanishing problem. ReLU can be expressed like: f(x)=max(0,x). It will

replace all the negative value by zero. ReLLU is shown in figure 2.4.

. ReLU

R(z) =maxz(0, z)

-10 =5 0 5 10

Fig. 2.4: Rectified Linear Unit

2.4 Pooling layer

Pooling layer can reduce the spatial amount of the presentation, dispose of unnec-

essary information or features and lessening the computation cost. Preventing overfit-

— 11 -



2.5 Fully connected layer

ting coming. There are two different function called max pooling[43], average pooling.
However, researchers are mainly focus on max pooling layer because it extract the im-
portant features (the biggest pixel) of the input volume. Figure 2.5 shows max pooling
and average pooling methods with 2x2 filters and stride of 2 (frequently used setting).
Max pooling applied to the input feature map and output the maximum pixel in every
subregion that filter slide around. Average pooling calculate the average pixel in the
subregion that filter slide around. As we can see in the figure 2.5, a 4x4 features map

becomes a 2x2 pooled feature map, but average pooling sometimes cannot extract good

features.
Max pooling
4|3
21232 712
414103
5171411 3|2
212121 4|2

Average pooling

Fig. 2.5: Example of max pooling

2.5 Fully connected layer

After multiple convolutional layers and pooling layers, there are one or two fully
connected layers to give the final classification results. Fully connected layer connect
every neuron in the previous layer to every neuron in the next layer like regular neural
networks. The fully connected layer in the CNN represents the feature vector for the

input. The feature vector holds information that can present the input. During training,

- 12 —



2.5 Fully connected layer

the feature vector is being used to determine the loss, and help the network to get train.

The convolutional layers before fully connected layer extracts the pixel regarding
local features (edges, shapes, etc.) in the input images. Each convolutional layer using
serveral filters to extract the different local features. The fully connected layer composite
and aggregated all features from all the previous convolutional layers then help to classify

the results.

- 13 —



Chapter 3

Methods of Super-Resolution

In this chapter, we introduce CNNs method for super-resolution. Then we introduce
our details of SRCNN configuration. Finally, we explain our proposed 3D-EDSR model

configuration.

3.1 Super-Resolution Neural Network

With the development and success of deep learning method applied in computer
vision fields, Dong et al. introduced super-resolution convolutional neural network (SR-
CNN). It uses only 3 layers network to generate HR images, and it demonstrates high
quality image reconstruction in natural images. The SRCNN scheme is a feed-forward
network which can be divided into three steps, patch extraction and representation,
non-linear mapping, and reconstruction. The patch reconstruction step extracts patches
from the LR image Y and represents each patch as a HR vector. The output of this
steps is all the features of the input images which is expressed as Fy(Y'). The first step
is expressed as follows:

Fi(Y) = max(0, W1 Y + By) (3.1)
Here, Y is the input image, * represents convolution operation, W; and Bj represent
the filters and biases respectively. Wi has a size ¢ x f; x f; x nyp, where c is the
number of channels in the input image, f; is the spatial size of a filter, and n; is the

number of filters. The output is composed of n; feature maps. B is an n; -dimensional

— 14 —



3.1 Super-Resolution Neural Network

vector. The feature maps obtained by convolution is processed by the activation function
called ReLLU. The next step is non-linear mapping step, the ni-dimensional vectors are
mapped non-linearly to another set of no-dimensional feature vectors. Each mapped
vector represents a HR pixel block, and these vectors form another feature map set

F5(Y). The non-linear mapping operation is expressed as follows:

F1 (Y) = maX(O, W2 * Fl(Y) + BQ) (32)

Here, W5 has a size of n; x f; x f; x mno. If the second convolution layer contains
ne convolution kernels, after the convolution operation the algorithm will generate no-
dimensional feature map. The output of this each vector of no-dimension represents
a high- resolution pixel block. The last step is reconstruction step, in this step the
algorithm aggregates the above HR representation to generate the final HR image. The

operation of the last step is as follows:

F(Y)=W;x Fy(Y) + By (3.3)

Here W3 has a size of ny x f3 x f3, corresponds to c filters, and Bj is a c-dimensional
vector. We adapted SRCNN for magnetic resonance images. We used the Adam op-
timizer instead of stochastic gradient descent (SGD) optimizer that Dong used in his
paper. The SGD maintains a single learning rate for all weight updates and the learning
rate does not change during training. Adam combines the best properties of the Ada-
Grad and RMSProp algorithms to provide an optimization algorithm that can handle
sparse gradients on noisy problems. We used the typical and basic SRCNN configura-
tion that proposed by Dong et al., which f1 =9, fo =1, f3 =5, n; = 64, ny = 32.

Figure 3.1 shows the architecture of the SRCNN for MRI.

— 15 —



3.2 Super-Resolution Generative Adversarial Network

Learning feature Learning feature

Low resolution image Convolutional Nerual Network High resolution images
from MRI composed of convolutional layers by SRCNN reconstruction

and pooling layers

Fig. 3.1: SRCNN structure for MRI

3.2 Super-Resolution Generative Adversarial Net-

work

3.2.1 Brief of SRGAN

In 2017, Lim, Bee, et al. proposed a SRGAN/[44] based on Ian Goodfellow’s Gen-
erative adversarial network (GAN) [45] to solve the super-resolution problems. GAN
have two models, a generative model and a discriminative model. The task of the dis-
criminative model is determining whether a given image looks natural or looks like it
is artificially created. The generative model have the task of creating looks like natural
images that are similar to the original data distribution. The analogy used in the origi-
nal paper is that the generative model seems “a team of counterfeiters, trying to make
and use the fake currency,” in the same time, discriminative models is like “the police,
trying to detect the counterfeit currency ”[44]. As the model train through alternating
optimization, both methods are improved until the discriminative model can’t detect
the counterfeit currency anymore. In SRGAN, generative model generate HR images,
and discriminative model try to detect whether the images is generated by generative

or the original image from the database. When discriminative model thinks the image

— 16 —



3.2 Super-Resolution Generative Adversarial Network

generated by generative model is the image from the database, then we think the HR

images have been generated by the SRGAN.

3.2.2 Architecture of SRGAN

There are multiple residual block in generator network (SRResNet), each residual
block contains two 3x3 convolutional layers, then batch normalization is followed by
convolutional layer, and using PReLU as activation function. Two sub-pixel convolution
layers are used to increase the feature size. In the discriminative network, it has 8
convolution layers, with the layers of the network getting deeper, the number of the
features are increasing. Then used LeakyReLU as activation function. Finally use two
fully connected layers and sigmoid activation function to achieve the the probability of

predicting a natural image. Figure 3.2 shows the architecture of the SRGAN.

Generator Network Bresidufal blocks

o
=
@

=
=

=

2]
0]

s

o

_— e
Skip connection

Discriminator Network

1t

Fig. 3.2: Architecture of the SRGAN

— 17 —



3.2 Super-Resolution Generative Adversarial Network

3.2.3 Residual blocks

As more layers using certain activation functions are added to neural networks, the
gradients of the loss function approaches zero, making the network difficult to train.
This problem was solved by the batch normalization [46] Szegedy proposed. However,
degradation problem caused by complex networks still exists. As the figure 3.2 shows,
the generator network have multiple residual blocks. Residual blocks are the fundamen-
tal building block of residual networks [27] which is one of the solution for vanishing
gradient problems. Figure 3.3 shows the residual block. Residual block not only have
a directly convolutional output, but also have a branch which connect the input to the
output. As the figure 3.3 shows, the residual connections directly adds the value at the

beginning of the block, x, to the end of the block H(x)=F(x)+x.

Weight layer
X
RelLU
F(X) Weight layer
T
F(X)+X (+)e
I elU

Fig. 3.3: Residual block

3.2.4 Perceptual loss

A new loss function - perceptual loss was proposed in the paper, this function enable

the network to recover realistic textures and fine grained details from images. The loss

— 18 —



3.3 Enhanced deep residual networks

function have two parts, the content loss and the adversarial loss. The adversarial
encourage images that look like the image from the database (more natural), and the
content loss makes sure the generated image has similar features with the original LR
images. Content loss is basically a Euclidean distance loss between the feature maps
(pretrained VGG networks) of the new reconstructed image and actual HR training
image. SRGAN uses a perceptual loss measuring the MSE of features extracted by

VGG-19 networks:

Wi,; Hij
lVGG/z,] = H Z gbl’] ]HR ¢i7j(G9G(ILR))m,y)2 (34)

rz=1 y=1

<

3.3 Enhanced deep residual networks

Enhanced deep residual networks (EDSR)[28] is started from SRResNet and opti-
mized it for higher accuracy. EDSR removed the batch-normalization of the residual
blocks, because the input and output share similar distribution in super-resolution prob-
lem. It employs 32 residual blocks with 256 channels and pixel-wise L loss instead of

Lo. Figure 3.4 shows different kinds of residual block. Inspired by the EDSR, we propose

x X
| |
\ \
Conv
C v |
RELU __RelU RelU
Ccnv _ Conv Conv
BN /
Addltlon [ Addition | [ Addition |
RELU
+
Xi+1 Xp+1 Xi+1
ResNet SRResNet EDSR

Fig. 3.4: Residual block

a three-dimensional ResNet model for Super-Resolution(3D-EDSR). The network gen-
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3.3 Enhanced deep residual networks

erally followed the EDSR model. In our architecture, to be able to deal with volumetric
information we use 3D convolutional layers. 3D convolutional kernels are necessary to
take full advantage of the structure of the input data. We use eight residual blocks
composed of a convolution with 64 filters of size 3x3x3, ReLu activation function and
another convolution layers with the same parameters before. The original version of
EDSR is using MSE loss, inspired by the SRGAN, we use perceptual loss based on the
first three convolutional layers of VGG16. Perceptual loss compared the features from
VGG16 and real features from the generated image, making the reconstructed images
more similar. VGG Net is one of the most influential networks. VGG16 contains 13
convolution layers and 3 full-connected layers. The weight configuration of the VGGNet
is publicly available and has been used in many other applications and challenges as a

baseline feature extractor. Figure 3.5 shows our proposed network.
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Fig. 3.5: Proposed network

Figure 3.6 shows the development from GAN to our proposed networks. In SRGAN,

authors used residual blocks to build a generative model which can be called SRResNet.

— 20 —



3.3 Enhanced deep residual networks

Inspired by the SRResNet model, EDSR had been introduced which also used residual
block but changed the architecture of residual block as figure 4.4 shows. Our proposed

network is based on EDSR but adapted it for volumetric data.
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Fig. 3.6: From GAN to EDSR
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Chapter 4

Experiments and Evaluation

methods

In this chapter, we introduce our experiment details and our evaluation methods.
First, we talk about the hardware and software environment where our experiment
conducted. Then, we explain how we do the experiment by using SRCNN and 3D-

EDSR. Finally we explain the details of evaluation methods.

4.1 Experiment environment

The 2D-SRCNN model is implemented in Keras (Tensorflow backend). Keras is a
high-level neural networks API, written in Python and capable of running on top of Ten-
sorFlow, CNTK or Theano. It is widely used in the industry and research community,
helping researchers start from scratch and turn the model into product.

3D-EDSR model is implemented in FastAl. FastAl simplifies training fast and ac-
curate neural networks using modren best practise. FastAl is not only an educational
resource, it also can be used in cutting-edge research and have achieved state of the art
results.

They were performed in different hardware and software environment. Table 4.1

shows the experiment environments.
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4.2 SRCNN

Table 4.1: Experiment Environment

/ SRCNN 3D-EDSR
CPU Intel(R)Core(TM)i7  Intel(R) Xeon(R) CPU E5-2620 v4
GPU GeForce GTX 1080 Ti GeForce GTX 1080 Ti
Memory 32G 32G
OS Ubuntu 16.04 LTS Ubuntu 16.04 LTS
Deep Learning Frameworks FastAl Keras, Tensorflow

4.2 SRCNN

We use the MRI image provided by the hospital. We have 280 MRI dicom images,

we randomly selected 224 as training set, 56 as test set.

4.2.1 Preprocess

First we transformed the dicom data into three channels png files which size is 512
x 512. Next we downsampled it into 256 x 256. Then we use gaussian function to blur
the image. Finally we upsample the image to original size 512 x 512. We called this
image low-resolution image. Figure 4.1 shows the steps we descried before.

We use stride equals 14 to generate patches which size is 33x33, we can get 61,000
sub images, and we called it X, which is the high resolution image (Label). Figure 4.2
shows some of the patches the networks generates. Then we use the exact same process
of patching in the low-resolutionimages. Finally we put this low-resolution patches into

training phase and called it image Y.
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4.2 SRCNN

(a) Orignal image

(¢) Upsample blur image

Fig. 4.1: Preprocessing
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4.2 SRCNN

-

Fig. 4.2: Generated patches

4.2.2 Training

We first compared three different configuration of SRCNN. Table 4.2 shows different
configuration we used for SRCNN. After comparing different configuration of SRCNN.
We found out the typical and basic SRCNN configuration are the most useful one,
which is f1 =9, fo =1, f3 =5, ny = 64, ny = 32. In the original paper, authors only
consider training in Y channel, they did bicubic upsampling to other channels in order
to compared with the conventional way. And other channels would not be trained or
tested. We didn’t use any padding in all three layers in the training phase. Hence the

output size of the SRCNN is 21*21. In order to compare the PSNR, we added padding
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4.3 3D-EDSR

Table 4.2: Configuration of SRCNN

9-1-5 9-3-5 9-5-5

layer 1 | 64 kernels, size 9x9 | 32 kernels, size 1x1 | 1 kernels, size 5x5
layer 2 | 64 kernels, size 9x9 | 32 kernels, size 3x3 | 1 kernels, size 5x5

layer 3 | 64 kernels, size 9x9 | 32 kernels, size 5x5 | 1 kernels, size 5x5

after every convolutional layer in the testing phase. The details of each layer is shown

in table 4.3.

Table 4.3: Details of each layers

Input | 33*33*1

Convl | Filters 9*9*64

Output | 25*25*64

Input | 25*25%64

Conv2 | Filters 1*1*32

Output | 25*25*32

Input | 25*25%*32

Conv3 | Filters 5*5%1

Output | 21*21*1

4.3 3D-EDSR

In order to load DICOM MRI volume data, pydicom toolbox was used. The data
in dicom had been read and the slices were ordered by the pydicom using method ” Slice

Location”. The data is normalized to intensities between 0 and 1. Then blurred all three
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4.3 3D-EDSR

dimension by using sigma gaussian filter. Figure 4.3 shows the ground truth image and

figure 4.4 shows the blurred image by sigma gaussian filter. Then stored the data in

Fig. 4.3: Ground truth Fig. 4.4: Blurred image

32x32x32 volumes for training and save as hb files. Figure 4.5 shows the blurred volumes
and original volumes.

VGG16 is loaded in eval mode in order to get feature activations for both the HR
training blocks as well as the network output for predicted HR blocks. The gradients for
the super resolution network can be taken through the feature activation comparisons
from the VGG network. FastAl code was written for 2D images, we expanded the
perceptual loss function to calculate the feature activations for every possible 2D slice
of the 32x32x32 training volume data. VGG16 expects a 3-channel RGB image, so here
every 2D slice of the 32x32x32 volume data is transformed into a 3x32x32 image, and
the appropriate means and stdevs are set for the RGB channels.The feature activations

are calculated for each slice and the loss function is composed iteratively.

— 27 —



4.4 Evaluation methods

S f
Nl

Fig. 4.5: Original volume and blurred volume

4.4 Evaluation methods

In order to evaluate the result high-resolution images quantitatively, we use peak
signal-to-noise ratio (PSNR)[30] and structural similarity (SSIM)[31] to evaluate the
results. The MSE represents the cumulative squared error between the compressed
and the original image, whereas PSNR represents a measure of the peak error. The
higher of the PSNR, the better degraded image has been reconstructed to match the
original image and the better the reconstructive algorithm. PSNR is commonly used as
a measure of the quality of noisy images.

The main limitation of the PSNR is that it relies strictly on numeric comparison
and does not actually take into account any level of biological factors of the human
vision system such as the structural similarity index.

SSIM actually measures the perceptual difference between two similar images. It
cannot judge which of the two is better: that must be inferred from knowing which

is the “original ” and which has been subjected to additional processing such as data
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4.4 Evaluation methods

compression. SSIM is designed to improve on traditional methods such as peak signal-
to-noise ratio (PSNR) and mean squared error (MSE).

Accroding to the author of SRGAN, the ability of MSE (and PSNR) to capture
perceptually relevant differences, such as high texture detail, is very limited as they are
defined based on pixel-wise image differences [47, 48, 49]. So we also performed a Mean
opinion score (MOS) test to quantify the ability of different approaches to reconstruct
perceptually convincing images. Specifically, we asked 10 raters to rate from 1 (low
quality) to 5 (high-quality) to the super-resolved images. The raters rated versions of
each bicubic, nearest neighbor (NN), SRCNN, 3D-EDSR models and the original HR
images. The raters were calibrated on the blurred images (score 1) and ground truth
(score 5) versions of 10 images from the training set. We randomly select 20 images
from the testing set, then presents all the images in a randomized fashion to the raters
to evaluate (5 methods: bicubic, nearest neighbor, SRCNN, 3D-EDSR, Ground-truth,

total 100 images). We will talk about more detail about the result in next chapter.
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Chapter 5

Results and Discussion

In this chapter, we discuss about the results of the experiments and demonstrating

visual results for the viewers.

5.1 Comparison of different SRCNN configuration

Table 5.1 shows the performance comparison between interpolation methods and
different SRCNN configuration. As the table shown, SRCNN methods outperformed
interpolation methods. Among SRCNN configuration, the 9-5-5 model has the best
performance. However, 9-5-5 model is just slightly better than 9-1-5 model and 9-3-
5 model but need longest time to train (Table 5.2). In the next section we mainly

compared the performance of 9-1-5 model and our proposed 3D-EDSR methods.

5.2 Comparison of image quality

Quantitative results are summarized in Table 5.3. As the tables shows, 3D-EDSR
achieve the better results in MOS testing, but in PSNR and SSIM, SRCNN achieve
better results. Bicubic gain a bit higher SSIM value than 3D-EDSR. In SRGAN’s
paper, author achieve state-of-the-art result in SSIM and PSNR by a upscale factor 4.

And we only use 8 residual block in our proposed 3D-EDSR model.
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5.3 Visual Results

Table 5.1: The results of SSIM and PSNR for different methods

Method Evaluation mean std
SSIM 0.7295 | 0.0086
Nearest Neighbor
PSNR 27.78 0.91
SSIM 0.7756 | 0.0091
Bilinear
PSNR 29.07 0.90
SSIM 0.8233 | 0.0088
Bicubic
PSNR 29.84 0.89
SSIM 0.9214 | 0.0059
9-1-5
PSNR 32.11 0.77
SSIM 0.9371 | 0.0053
9-3-5
PSNR 32.72 0.79
SSIM 0.9376 | 0.0053
9-5-5
PSNR 32.88 0.77

Table 5.2: Training time of different SRCNN model

Model 9-1-5 | 9-3-5 | 9-5-5

Training time (h) | 17.4 | 23.9 | 27.3

5.3 Visual Results

Figure5.1 - 5.12 illustrates an example by using interpolation methods (nearest
neighbor and bicubic), SRCNN and 3D-EDSR. In this example, SRCNN achieve 1.2
dB higher PSNR than our proposed 3D-EDSR. Accroding to the definition of PSNR,
the higher of the PSNR, the better degraded image has been reconstructed to match

the original image and the better the reconstructive algorithm. SRCNN gained higher
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5.3 Visual Results

Table 5.3: Comparison of NN, Bicubic, SRCNN , 3D-EDSR.

PSNR SSIM MOS

Nearest Neighbor 25.94 0.7124 1.76

Bicubic 26.14 0.7439 2.07
SRCNN 28.12 0.7841 2.51
3D-ResNet 26.43 0.7405 3.69
Ground Truth / 1 4.32

PSNR value than 3D-EDSR means SRCNN outperformed 3D-EDSR. In fact, compared
the image generated by SRCNN, the image reconstructed by 3D-EDSR have more sharp

edges which seems more clear for human being.

Fig. 5.1: Blurred image Fig. 5.2: Blurred image

— 32 —



5.3 Visual Results

Fig. 5.3: nearest neighbor image Fig. 5.4: enlarged NN image

Fig. 5.5: Bicubic image Fig. 5.6: enlarged bicubic image
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5.3 Visual Results

Fig. 5.7: SRCNN image Fig. 5.8: enlarged SRCNN image

Fig. 5.9: 3D network image Fig. 5.10: enlarged image
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5.3 Visual Results

Fig. 5.11: Ground Truth Fig. 5.12: Ground Truth
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Chapter 6

Conclusion

This dissertation consisted of introduction of convolutional neural networks, meth-
ods for single image super resolution, a 2D-SRCNN model has been applied and evalu-
ated, also a new 3 dimensional EDSR or MRI have been proposed.

We compared different SRCNN configurations, we found out that 9-5-5 model
achieved best performance but it took too much time to train. 9-1-5 model can achieved
similar results compared with 9-5-5 model but is 1.5x faster. Hence, in the following
experiments, we use 9-1-5 model to represent SRCNN method. SRCNN achieved higher
PSNR than interpolation methods, but it still generate visually over-smoothed images.

We showed that our proposed methods can recover local image textures and details
more accurately, and our reconstruction images have more shaper edges than SRCNN
and interpolation methods. However, our proposed methods didn’t achieved higher
PSNR and SSIM compared with SRCNN methods.

There are several reasons that might explain why our proposed method didn’t
achieve higher PSNR than SRCNN methods. First, our proposed network still not
”deep” enough, we only use eight residual blocks in our network. Many researchers
use more than 16 residual block in their network to improve the performance of their
networks. In the future works, we should try more residual blocks to improve the
performance of our proposed method.

Second, we generated images which upscale factor is 2. In SRGAN, authors used

an upscale factor 4 to generate images and achieved highest PSNR and SSIM values
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compare with other methods. We should try different upscale factor instead of scale
factor 2 in the future.

Third, and maybe the most imporatant reasons. We use perceptual loss instead
of MSE loss in our proposed model. As seen from the inverse relationship between the
MSE and PSNR, to achieve higher PSNR is to minimize MSE loss. The easiest way
to minimize the MSE loss is to blur the image. Maybe that is the reason why SRCNN
generate over-smoothed images but still have higher PSNR value. Our proposed method
has highest mean opinion score, but mean opinion score depends on subjective visual
impression. We need to evaluate our methods in objective evaluation methods. Since
PSNR and SSIM have it own limitaion, we should try another evaluation method instead

of PSNR and SSIM to evaluate our proposed methods.
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